2024年12月17日 星期二
基于代谢组和转录组的银缕梅叶片退红机制初探
Preliminary study on the mechanism of leaf red fading of Parrotia subaequalis based on metabolome and transcriptome
2024年 第33卷 第4期 页码[1-11]    下载全文[3.5MB]  
摘要

 为了探究银缕梅〔Parrotia subaequalis (H. T. Chang) R. M. Hao et H. T. Wei〕叶片在春季由红转绿的物质基础和分子机制,采用代谢组和转录组联合分析对银缕梅幼叶和成熟叶中差异花色苷类成分含量及差异表达基因进行比较分析,并对花色苷合成关键酶基因进行生物信息学分析。结果表明:幼叶中花色苷类成分的总相对含量约为成熟叶的27倍;幼叶中锦葵色素3-O-葡萄糖苷、锦葵色素3-O-半乳糖苷和芍药花素3-O-葡萄糖苷的相对含量明显高于其他花色苷类成分,且极显著(p<0.01)高于成熟叶中对应成分的相对含量。比较幼叶和成熟叶的转录组数据,共筛选出11 000个差异表达基因。GO功能富集结果显示富集到催化活性的差异表达基因最多(3 000个);KEGG富集分析结果显示差异表达基因显著富集在植物激素信号转导通路和苯丙烷生物合成通路。通过与葡萄(Vitis vinifera Linn.)中已知的花色苷合成关键酶氨基酸序列进行比对,共筛选出9个银缕梅花色苷合成酶基因,并且这9个基因在幼叶中的相对表达量明显高于成熟叶。qRT-PCR结果表明:PsCHS1、PsF3′H、Ps3GT和PsAOMT的相对表达量极显著高于成熟叶。PsCHS1、PsF3′H、Ps3GT和PsAOMT分别包含393、528、461和323个氨基酸残基;4个蛋白的二级结构均以α螺旋和无规卷曲为主,其中,PsF3′H不含β转角,其余3个蛋白均由α螺旋、β转角、延伸链和无规卷曲构成;4个蛋白的三级结构均含有相应蛋白家族的保守结构。系统进化树显示:PsCHS1与红花檵木(Loropetalum chinense var. rubrum Yieh)的LcCHS,PsF3′H与枫香树(Liquidambar formosana Hance)的LfF3′H,Ps3GT与可可(Theobroma cacao Linn.)的Tc3GT,以及PsAOMT与枫香树的LfAOMT分别首先聚在一起。综上所述,锦葵色素3-O-葡萄糖苷、锦葵色素3-O-半乳糖苷和芍药花素3-O-葡萄糖苷可能是银缕梅叶片退红的主效花色苷类成分,PsCHS1、PsF3′H、Ps3GT和PsAOMT可能是银缕梅叶片退红的关键基因。

Abstract

 To explore the material basis and molecular mechanism of the leaf color transition from red to green of Parrotia subaequalis (H. T. Chang) R. M. Hao et H. T. Wei in spring, the comparative analysis was conducted on the differential anthocyanins contents and the differentially expressed genes in young leaf and mature leaf of P. subaequalis by using a combined analysis of metabolome and transcriptome, and the bioinformatic analysis was conducted on the genes of key enzymes for anthocyanin synthesis. The results show that the young leaf is about 27 times the total relative content of anthocyanins in mature leaf. In young leaf, the relative contents of malvidin 3-O-glucoside, malvidin 3-O-galactoside, and peonidin 3-O-glucoside are obviously higher than those of the other anthocyanins, and are extremely significantly (p<0.01) higher than those of the corresponding components in mature leaf. A total of 11 000 differentially expressed genes are screened by comparing the transcriptome data of young leaf and mature leaf . The GO functional enrichment result shows that the differentially expressed genes enriched in catalytic activity are the most (3 000); the KEGG enrichment analysis result shows that the differentially expressed genes are significantly enriched in plant hormone signal transduction pathway and phenylpropanoid biosynthesis pathway. A total of nine anthocyanin synthase genes in P. subaequalis are screened through alignment of amino acid sequences of the known anthocyanin synthesis key enzymes in Vitis vinifera Linn., and the relative expressions of the nine genes in young leaf are evidently higher than those in mature leaf. It is revealed that the relative expressions of PsCHS1, PsF3′H, Ps3GT, and PsAOMT are extremely significantly higher than those in mature leaf by qRT-PCR. PsCHS1, PsF3′H, Ps3GT, and PsAOMT contain 393, 528, 461, and 323 amino acid residues, respectively. The secondary structures of all the four proteins are mainly consisted of α-helix and random coil, among which, PsF3′H lacks β-turn, while all the other three proteins are consisted of α-helix, β-turn, extended strand, and random coil. The tertiary structures of all the four proteins contain conserved structures of corresponding protein families. The phylogenetic tree shows that PsCHS1 and LcCHS of Loropetalum chinense var. rubrum Yieh, PsF3′H and LfF3′H of Liquidambar formosana Hance, Ps3GT and Tc3GT of Theobroma cacao Linn., and PsAOMT and LfAOMT of L. formosana are clustered first, respectively. In conclusion, malvidin 3-O-glucoside, malvidin 3-O-galactoside, and peonidin 3-O-glucoside are probably the primary anthocyanins responsible for leaf red fading of P. subaequalis, and PsCHS1, PsF3′H, Ps3GT, and PsAOMT are probably the key genes involved in leaf red fading of P. subaequalis.

 

关键词银缕梅; 叶色; 退红机制; 代谢组; 转录组
Key wordsParrotia subaequalis (H. T. Chang) R. M. Hao et H. T. Wei; leaf color; red fading mechanism; metabolome; transcriptome
作者周谦1,2, 黄犀2, 罗会婷2, 王欢利2, 严灵君2, 汤诗杰1,2
所在单位1. 南京中医药大学, 江苏 南京 210023; 2. 江苏省中国科学院植物研究所(南京中山植物园) 江苏省植物资源研究与利用重点实验室, 江苏 南京 210014
点击量1610
下载次数1606
基金项目江苏省林业科技创新与推广项目(LYKJ[2020]24); 江苏省中国科学院植物研究所银缕梅攻关项目(JSYLM202301); 丹阳市重点研发计划(现代农业)项目(SNY202205)