部分十字花科植物花粉形态特征比较

陈相洁^{1,2}, 毛礼米^{1,3,①}, 潘昱安^{4,5}, 王英浩^{1,2}

(1. 中国科学院南京地质古生物研究所现代古生物学和地层学国家重点实验室,江苏南京210008;2. 中国科学院大学,北京100049; 3. 中国科学院大学南京学院,江苏南京211100;4. 英国自然历史博物馆,伦敦SW75BD;5. 帝国理工学院,伦敦SW72AZ)

摘要:为了更好地比较十字花科(Brassicaceae)植物花粉的形态特征,使用光学显微镜和扫描电镜观察诸葛菜 [Orychophragmus violaceus (Linn.) O. E. Schulz]、芸薹(Brassica campestris Linn.)、欧洲油菜(B. napus Linn.)2个品种 (叶缘具锯齿和叶缘无锯齿)、芥菜[B. juncea (Linn.) Czern.]和萝卜(Raphanus sativus Linn.)的花粉形态,并比较 6个材料花粉的几何形态参数差异。结果表明:6个材料花粉的极面观为三裂圆形,欧洲油菜(叶缘具锯齿)和芥菜 花粉的赤道面观为椭球形,其余4个材料花粉的赤道面观为长椭球形,并且6个材料花粉均具三沟;极轴长和赤道 轴长分别为22.44~28.19和19.09~24.25 µm,极轴长与赤道轴长的比值为1.07~1.18;赤道面直径和极面直径分别 为20.78~26.15和18.93~25.21 µm;除诸葛菜花粉外壁具2层结构(即外壁外层和基层)外,其余材料花粉外壁均具 3层结构(即外壁外层、基层和外壁内层),厚度1.84~2.46 µm;极面弧形弯曲率为0.34~0.39。诸葛菜花粉网眼内 无疣状结构,其余材料花粉网眼内均有疣状结构,其中,芸薹花粉网眼内的疣状结构最明显,芥菜花粉网眼内的疣 状结构最不明显;6个材料花粉的网眼密度为0.3~0.9 µm⁻²,网眼直径为0.86~1.44 µm。根据上述花粉形态特征, 6个材料可分成2个大类,其中,诸葛菜单独为一类,其花粉赤道面观为椭球形或长椭球形,外壁较厚,网眼内有疣状结构,且 网眼直径小、密度大;其余材料为另一类,其花粉赤道面观为椭球形或长椭球形,外壁较厚,网眼内有疣状结构,且 网眼直径小、密度大;其余材料为另一类,其花粉赤道面观为椭球形或长椭球形,外壁较厚,网眼内有疣状结构,且 网眼直径小、密度大;其余材料为另一类,其花粉赤道面观为椭球形或长椭球形,外壁较厚,网眼内有疣状结构,目 网眼直径小、密度大;其余材料为另一类,其花粉赤道面观为椭球形或长椭球形,外壁较厚,网眼内有疣状结构,目

关键词: 十字花科; 花粉形态; 几何形态参数; 疣状结构

中图分类号: Q945.78; Q948.112⁺.3; S511 文献标志码: A 文章编号: 1674-7895(2022)01-0013-08 DOI: 10.3969/j.issn.1674-7895.2022.01.03

Comparison on pollen morphological characteristics of some species of Brassicaceae CHEN Xiangjie^{1,2}, MAO Limi^{1,3,①}, PAN Yu'an^{4,5}, WANG Yinghao^{1,2} (1. State Key Laboratory of Modern Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Nanjing College, University of Chinese Academy of Sciences, Nanjing 211100, China; 4. The Natural History Museum, London SW7 5BD, UK; 5. Imperial College London, London SW7 2AZ, UK), *J. Plant Resour. & Environ.*, 2022, **31**(1): 13–20

Abstract: To better compare the pollen morphological characteristics of Brassicaceae species, pollen morphology of *Orychophragmus violaceus* (Linn.) O. E. Schulz, *Brassica campestris* Linn., two cultivars of *B. napus* Linn. (leaf margin with serration and leaf margin without serration), *B. juncea* (Linn.) Czern., and *Raphanus sativus* Linn. were observed by using light microscope and scanning electron microscope, and the differences in pollen geometrical parameters among six species/cultivars were compared. The results show that the pollen polar views of six species/cultivars are trilobed round, and the

收稿日期: 2021-09-11

基金项目:国家自然科学基金面上项目(41877437);中国科学院战略性先导专项 B 类子课题(XDB26030402)

作者简介:陈相洁(1996—),女,四川宜宾人,硕士研究生,主要从事第四纪孢粉学研究。

^①通信作者 E-mail: lmmao@ nigpas.ac.cn

引用格式:陈相洁,毛礼米,潘昱安,等.部分十字花科植物花粉形态特征比较[J].植物资源与环境学报,2022,31(1):13-20.

pollen equatorial views of B. napus (leaf margin with serration) and B. juncea are oblate, while those of other four species/cultivars are prolate, and the six species/cultivars all have three colpi; the length of polar axis and equatorial axis are 22.44-28.19 and $19.09-24.25 \mu m$, respectively, and the ratio of length of polar axis to length of equatorial axis is 1.07-1.18; the diameter of equatorial plane and polar plane are 20.78-26.15 and 18.93-25.21 μ m, respectively; except that the pollen exine of O. violaceus is two-layer structure (which are sexine and foot layer), that of other species/cultivars are all three-layer structure (which are sexine, foot layer, and endexine) with the thickness of $1.84-2.46 \mu m$; the arc curvature of polar view is 0.34-0.39. There is no vertucous structure in pollen lumina of O. violaceus, while there are verrucous structures in pollen lumina of other species/cultivars, in which, the verrucous structure in pollen lumina of *B. campestris* is the most evident, while that of *B. juncea* is the least evident; the pollen lumen densities of six species/cultivars are $0.3-0.9 \ \mu m^{-2}$, and the lumen diameter is 0.86-1.44 µm. Based on above pollen morphological characteristics, the six species/cultivars can be divided into two categories, in which, O. violaceus belongs to one category individually, its equatorial view is prolate, the exine is relatively thin without vertucous structure in lumina, and the lumen diameter and density are small and large, respectively; other species/cultivars belong to the other category, their equatorial views are oblate or prolate, the exine is relatively thick with vertucous structures in lumina, and the lumen diameter and density are large and small, respectively. It is suggested that there are a certain differences in pollen shape and size, exine hierarchical structure and thickness, arc curvature of polar view, verrucous structure in lumina, and lumen density and size of six species/cultivars. Differences in verrucous structure in the pollen lumina and some pollen geometrical parameters can be used to distinguish O. violaceus from other five species/cultivars, but the hierarchical structure of pollen exine under light microscope is not appropriate to be used as reference for pollen classification of Brassicaceae species.

Key words: Brassicaceae; pollen morphology; geometrical parameter; verrucous structure

根据 Al-Shehbaz^[1]的统计结果,全球的十字花科 (Brassicaceae)植物有 321 属 3 660 种。该科植物主 要分布在北温带,尤其是地中海区域^[2]。中国十字 花科植物有 95 属,包括 425 种、124 变种和 9 变型,分 布在全国各地,其中,西南、西北和东北的高山区及丘 陵区较多,平原及沿海地区较少^[3]。部分十字花科 植物是常见的农作物,具有重要的经济价值^[4]。在 农业考古研究中,耕作遗址中的花粉信息是探索早期 人类利用植物资源的关键代用指标,因此,对十字花 科植物花粉形态进行比较对于探究早期人类利用植 物资源的状况具有重要的科学价值。

十字花科植物的花粉形态大多在属和种的分类 或修订时作为参考依据^{[5,6],[7]163-165,[8]},可有效解决 十字花科部分属和种的分类争议^[9]。王淑芬等^[10]研 究了十字花科芸薹(俗名油菜)(Brassica campestris Linn.)、芥菜[B. juncea (Linn.) Czern.]、甘蓝 (B. oleracea var. capitata Linn.)、萝卜(Raphanus sativus Linn.)、诸葛菜[Orychophragmus violaceus (Linn.) O. E. Schulz]和桂竹香(Cheiranthus cheiri Linn.)的花粉外壁纹饰及孔沟形状等,为这些种类的 亲缘关系分析提供了孢粉形态方面的分类学依据。 还有研究者对十字花科部分属和种的花粉形态特征 进行了研究,并将花粉形态特征作为部分属和种的分 类依据^[2,11,12]。然而,现有的十字花科植物花粉形态 特征研究采用的花粉几何形态参数的类别和数量各 有不同,导致这些研究对十字花科植物花粉形态特征 的描述不全面。由于现生十字花科植物花粉形态特征 详细研究较少,致使十字花科的化石花粉鉴定与归类 大多只能停留在科水平,导致十字花科植物花粉在考 古孢粉学中的应用受到一定的局限。

随着花粉形态研究观察技术和图像分辨率的不断提高,研究者对十字花科花粉形态特征的了解越来越深入。1995年,王伏雄等^{[7]163}认为十字花科8属8种的花粉形态差异较小,均为三沟类型,外壁纹饰为网状结构;1999年,张成合等^[13]利用扫描电镜观察到供试十字花科蔬菜花粉的基本形态为长椭圆形,具三沟,沟长几乎达两极;到了21世纪,研究者发现十字花科植物花粉形态大致为球形或椭球形,具三沟和网状纹饰^[2,12,14,15]。光学显微镜和扫描电镜的不断升级为利用花粉形态特征和几何形态参数(如极轴长、赤道轴长、外壁厚度和网眼大小等)分析十字花科植物花粉形态提供了有利保障^[12,14-16]。

十字花科植物花粉形态类型较为单一,在光学显 微镜下难以分辨其属和种间的花粉形态特征差异。 为了更好地比较十字花科植物花粉的形态特征,本研究利用光学显微镜和扫描电镜对十字花科 6 个材料的花粉进行了观测,利用 9 个几何形态参数对供试材料的花粉形状和大小、外壁层次结构和厚度、极面弧形弯曲率、表面纹饰及网眼大小和密度进行了详细的比较和分析,以期为十字花科化石花粉鉴定及归类研究提供新的参考信息,并为探索早期人类利用植物资源和重建过去生态环境夯实花粉学研究基础。

1 材料和方法

1.1 材料

供试十字花科植物包括诸葛菜属(Orychophragmus Bunge)的诸葛菜,萝卜属(Raphanus Linn.)的萝卜品 种'白玉大根'('Baiyudagen')以及芸薹属(Brassica Linn.)的芸薹品种'赣油杂7号'('Ganyouza7')、芥 菜品种'雪里蕻'('Xuelihong')和欧洲油菜(B. napus Linn.)2个品种(叶缘具锯齿和叶缘无锯齿,具 体品种名不详)。于2021年3月在江苏省南京市中 国科学院南京地质古生物研究所实验科学用地采集 诸葛菜、芸薹及欧洲油菜2个品种新鲜的盛放花朵; 于2021年4月在江西省上饶市农用菜地采集芥菜和 萝卜新鲜的盛放花朵。每个材料采集2或3株,每株 6~8朵花。供试植物的凭证标本和花粉玻片均保存 于中国科学院南京地质古生物研究所。

1.2 方法

1.2.1 光学显微镜观察及相关几何形态参数测量 每个材料取7朵花,在Zoom645S立体显微镜(江南 禹成公司)下,用小剪刀和镊子挑取成熟花药,采用 标准乙酸酐分解法^[17]、使用V(乙酸酐):V(浓硫 酸)=9:1的混合溶液去除花粉中的有机质。采用 传统的甘油制片法^{[7]4-5}制作花粉玻片,将花粉玻片置 于Olympus BX51光学显微镜(日本 Olympus 公司) 下,用100倍油镜观察花粉形态,并对花粉极面和赤 道面分别进行上焦面、轮廓(光切面)和下焦面的观 察及拍照,每个材料至少拍摄40粒花粉不同焦面的 照片。文中涉及的花粉几何形态参数术语描述参考 《Illustrated Pollen Terminology》^[18]和《孢粉学手 册》^[19]。利用 Image J 软件(https://imagej.nih.gov/ ij/)对照片进行相关几何形态参数测量,包括花粉赤 道面观的极轴长(P)和赤道轴长(E),花粉极面观的 极面直径(Dp)、外壁厚度(Exine)、外壁弧形的宽度 (a)和高度(b),各参数具体测量部位见图 1。根据 测量结果计算极轴长与赤道轴长的比值(P/E)、赤道 面直径[De,计算公式为 De=(P+E)/2]和极面弧形 弯曲率(b/a)。b/a值越小,表示花粉沟越宽、平;b/a 值越大,表示花粉沟越窄、深。每个材料统计 40 个 花粉。

Exine: 外壁厚度 Thickness of exine; Dp: 极面直径 Diameter of polar; a: 外壁弧形宽度 Arc width of exine; b: 外壁弧形高度 Arc height of exine; P: 极轴长 Length of polar axis; E: 赤道轴长 Length of equatorial axis.

图 1 光学显微镜下十字花科植物花粉几何形态参数的测量示意图 Fig. 1 Measurement schematic diagram of pollen geometrical parameters of Brassicaceae species under light microscope

1.2.2 扫描电镜观察及相关几何形态参数测量 每 个材料取1朵花,在Zoom645S立体显微镜下,用镊子 将新鲜花药放在贴有导电胶的载物台上,喷金镀膜后 利用 TESCAN MAIA3 扫描电镜(捷克 Tescan 公司) 对花粉表面的极面、赤道面和网眼进行观察和拍照。 为了更准确地测量网眼直径和估算网眼密度,在高分 辨率电镜图上,利用 Image J 软件测量网眼的长度和 宽度,据此计算网眼直径(即网眼长度和宽度总和的 平均值);统计任意区域面积内的网眼数量,据此计 算网眼密度(即网眼数量与面积的比值)。每个材料 至少统计 10 个花粉。

1.3 数据处理及统计分析

使用 Origin 2019b 软件进行数据整理和统计分 析,并计算相关数据的均值和标准差。

2 结果和分析

2.1 供试十字花科植物的花粉形态特征

供试 6 个十字花科植物材料花粉形态特征的光 学显微镜和扫描电镜观察结果分别见图 2 和图 3;各

1,2. 诸葛菜 Orychophragmus violaceus (Linn.) O. E. Schulz; 1. 极面观 Polar view; 2. 赤道面观 Equatorial view. 3,4. 芸薹 Brassica campestris Linn.; 3. 极面观 Polar view; 4. 赤道面观 Equatorial view. 5,6. 欧洲油菜(叶缘无锯齿)B. napus Linn. (leaf margin without serration); 5. 极面观 Polar view; 6. 赤道面观 Equatorial view. 7,8. 欧洲油菜(叶缘具锯齿)B. napus (leaf margin with serration); 7. 极面观 Polar view; 8. 赤道面观 Equatorial view. 9,10. 芥菜 B. juncea (Linn.) Czern.; 9. 极面观 Polar view; 10. 赤道面观 Equatorial view. 11,12. 萝卜 Raphanus sativus Linn.; 11. 极面观 Polar view; 12. 赤道面观 Equatorial view.

图 2 光学显微镜下供试十字花科植物花粉的形态特征 Fig. 2 Morphological characteristics of pollens of test Brassicaceae species under light microscope

1,2. 诸葛菜 Orychophragmus violaceus (Linn.) O. E. Schulz: 1. 极面观 Polar view; 2. 赤道面观 Equatorial view. 3,4. 芸薹 Brassica campestris Linn.: 3. 极面观 Polar view; 4. 赤道面观 Equatorial view. 5,6. 欧洲油菜(叶缘无锯齿)B. napus Linn. (leaf margin without serration): 5. 极面观 Polar view; 6. 赤道面观 Equatorial view. 7,8. 欧洲油菜(叶缘具锯齿)B. napus (leaf margin with serration): 7. 极面观 Polar view; 8. 赤道面观 Equatorial view. 9,10. 芥菜 B. juncea (Linn.) Czern.: 9. 极面观 Polar view; 10. 赤道面观 Equatorial view. 11,12. 萝卜 Raphanus sativus Linn.: 11. 极面观 Polar view; 12. 赤道面观 Equatorial view.

图 3 扫描电镜下供试十字花科植物花粉的形态特征

Fig. 3 Morphological characteristics of pollens of test Brassicaceae species under scanning electron microscope

材料花粉几何形态参数的统计结果见表1。

2.1.1 诸葛莱花粉形态特征 诸葛莱花粉的极面观 为三裂圆形,赤道面观为长椭球形,具三沟(图 2-1, 2;图 3-1,2)。花粉极轴长 24.99 μm,赤道轴长21.14 μm,极轴长与赤道轴长的比值为 1.18;赤道面直径 23.67 μm,极面直径 24.18 μm;外壁具外壁外层(包 含覆盖层和基柱)和基层 2 层结构,厚度 1.84 μm;极 面弧形弯曲率 0.37;网眼内无疣状结构,网眼密度 0.9 μm⁻²,网眼直径 0.86 μm。

2.1.2 芸薹花粉形态特征 芸薹花粉的极面观为三 裂圆形,赤道面观为长椭球形,具三沟(图 2-3,4;图 3-3,4)。花粉极轴长 28.19 μm,赤道轴长 24.12 μm, 极轴长与赤道轴长的比值为 1.18;赤道面直径 26.15 μm,极面直径 25.21 μm;外壁具外壁外层(包含覆盖 层和基柱)、基层和外壁内层 3 层结构,厚度 2.46 μ m;极面弧形弯曲率 0.35;网眼内具有最明显的疣状 结构,网眼密度 0.3 μ m⁻²,网眼直径 1.35 μ m_o

2.1.3 欧洲油菜(叶缘无锯齿)花粉形态特征 欧洲 油菜(叶缘无锯齿)花粉的极面观为三裂圆形,赤道 面观为长椭球形,具三沟(图 2-5,6;图 3-5,6)。花 粉极轴长 25.56 μm,赤道轴长 23.19 μm,极轴长与赤 道轴长的比值为 1.15;赤道面直径 23.06 μm,极面直 径 22.63 μm;外壁具外壁外层(包含覆盖层和基柱)、 基层和外壁内层 3 层结构,厚度 2.00 μm;极面弧形 弯曲率 0.34;网眼内具有较为明显的疣状结构,网眼 密度 0.5 μm⁻²,网眼直径 1.15 μm。

2.1.4 欧洲油菜(叶缘具锯齿)花粉形态特征 欧洲 油菜(叶缘具锯齿)花粉的极面观为三裂圆形,赤道 面观为椭球形,具三沟(图 2-7,8;图 3-7,8)。花粉 极轴长 22.44 μm,赤道轴长 20.96 μm,极轴长与赤道

表 1 供试十字花科植物花粉几何形态参数的统计结果¹⁾

 Table 1
 Statistical result of pollen geometrical parameters of test Brassicaceae species¹⁾

种类 Species	极轴长/μm Length of polar axis				赤道轴长/µm Length of equatorial axis				极轴长与赤道轴长的比值 Ratio of length of polar axis to length of equatorial axis			
	Max.	Min.	\overline{X}	SD	Max.	Min.	\overline{X}	SD	Max.	Min.	\overline{X}	SD
诸葛菜 Orychophragmus violaceus	31.19	20.50	24.99	2.87	26.14	18.70	21.14	1.75	1.37	1.05	1.18	0.08
芸薹 Brassica campestris	32.90	20.99	28.19	2.24	28.00	14.33	24.12	2.26	1.70	1.00	1.18	0.11
BN1	30.07	20.99	25.56	2.28	25.50	19.14	23.19	1.63	1.48	1.00	1.15	0.12
BN2	26.37	20.53	22.44	1.24	22.65	18.62	20.96	0.94	1.23	1.00	1.07	0.06
芥菜 Brassica juncea	27.19	24.64	25.93	0.79	25.33	22.87	24.25	0.64	1.14	1.00	1.07	0.04
萝卜 Raphanus sativus	25.56	20.00	22.47	1.28	21.36	17.03	19.09	1.08	1.45	1.01	1.18	0.11
种类 Species	赤道面直径/µm Diameter of equatorial plane				极面直径/µm Diameter of polar plane				外壁厚度/μm Thickness of exine			
	Max.	Min.	\overline{X}	SD	Max.	Min.	\overline{X}	SD	Max.	Min.	\overline{X}	SD
诸葛菜 Orychophragmus violaceus	28.66	19.75	23.67	2.21	33.95	19.60	24.18	3.28	2.54	1.32	1.84	0.27
芸薹 Brassica campestris	29.25	18.05	26.15	2.01	30.47	18.41	25.21	2.25	3.23	1.60	2.46	0.30
BN1	26.94	20.21	23.06	1.54	25.38	19.56	22.63	1.42	3.01	1.57	2.00	0.28
BN2	24.39	20.17	21.70	0.94	22.79	18.88	21.46	0.90	2.84	1.65	2.24	0.26
芥菜 Brassica juncea	26.26	23.63	24.74	0.67	25.84	22.66	24.55	0.77	3.36	1.75	2.37	0.33
萝卜 Raphanus sativus	23.46	19.48	20.78	0.73	21.72	15.99	18.93	1.29	2.37	1.42	1.91	0.22
种类 Species	极面弧形弯曲率∕µm Arc curvature of polar view				网眼密度/μm ⁻² Density of lumen				网眼直径/μm Diameter of lumen			
	Max.	Min.	\overline{X}	SD	Max.	Min.	\overline{X}	SD	Max.	Min.	\overline{X}	SD
诸葛菜 Orychophragmus violaceus	0.53	0.26	0.37	0.05	1.0	0.7	0.9	0.1	1.01	0.72	0.86	0.10
芸薹 Brassica campestris	0.61	0.26	0.35	0.05	0.4	0.3	0.3	0.0	1.59	1.11	1.35	0.13
BN1	0.41	0.27	0.34	0.03	0.6	0.3	0.5	0.1	1.79	0.85	1.15	0.28
BN2	0.45	0.27	0.36	0.04	0.6	0.3	0.5	0.1	1.79	0.85	1.15	0.28
芥菜 Brassica juncea	0.57	0.30	0.39	0.05	0.3	0.2	0.3	0.0	1.62	1.31	1.44	0.10
萝卜 Raphanus sativus	0.49	0.29	0.38	0.05	0.6	0.3	0.5	0.1	1.62	1.31	1.44	0.08

¹⁾ Max.;最大值 Maximum; Min.:最小值 Minimum; X:均值 Mean; SD:标准差 Standard deviation. BN1:欧洲油菜(叶缘无锯齿) Brassica napus Linn. (leaf margin without serration); BN2:欧洲油菜(叶缘具锯齿) B. napus (leaf margin with serration). 轴长的比值为 1.07;赤道面直径 21.70 μm,极面直径 21.46 μm;外壁具外壁外层(包含覆盖层和基柱)、基 层和外壁内层 3 层结构,厚度 2.24 μm;极面弧形弯 曲率 0.36;网眼内具有不太明显的疣状结构,网眼密 度 0.5 μm⁻²,网眼直径 1.15 μm。

2.1.5 芥菜花粉形态特征 芥菜花粉的极面观为三 裂圆形,赤道面观为椭球形,具三沟(图 2-9,10;图 3-9,10)。花粉极轴长 25.93 µm,赤道轴长 24.25 μm,极轴长与赤道轴长的比值为 1.07;赤道面直径 24.74 μm,极面直径 24.55 μm;外壁具外壁外层(包 含覆盖层和基柱)、基层和外壁内层3层结构,厚度 2.37 µm;极面弧形弯曲率 0.39;网眼内具有最不明显 的疣状结构,网眼密度 0.3 μm⁻²,网眼直径 1.44 μm。 2.1.6 萝卜花粉形态特征 萝卜花粉的极面观为三 裂圆形,赤道面观为长椭球形,具三沟(图 2-11,12; 图 3-11,12)。花粉极轴长 22.47 µm,赤道轴长 19.09 μm,极轴长与赤道轴长的比值为 1.18:赤道面直径 20.78 µm,极面直径 18.93 µm;外壁具外壁外层(包 含覆盖层和基柱)、基层和外壁内层3层结构,厚度为 1.91 µm;极面弧形弯曲率 0.38;网眼内具有较为明显 的疣状结构,网眼密度 0.5 μm⁻²,网眼直径 1.44 μm。

2.2 供试十字花科植物花粉形态特征的比较

2.2.1 花粉形状和大小的比较 统计结果(表1)表 明:供试6个十字花科植物材料中,欧洲油菜(叶缘具 锯齿)和芥菜花粉的极轴长与赤道轴长的比值最小, 花粉形状为椭球形,诸葛菜、芸薹、欧洲油菜(叶缘无 锯齿)和萝卜花粉的极轴长与赤道轴长的比值较大, 花粉形状为典型的长椭球形。供试6个十字花科植 物材料花粉极轴长与赤道轴长的比值表现为欧洲油 菜(叶缘具锯齿)和芥菜相同且最小,欧洲油菜(叶缘 无锯齿)居中,诸葛菜、芸薹和萝卜相同且最大。

统计结果(表1)表明:供试6个十字花科植物材 料中,萝卜花粉的赤道面直径和极面直径均最小,芸 薹花粉的赤道面直径和极面直径最大。根据花粉赤 道面直径和极面直径,供试6个十字花科植物材料花 粉由小到大依次为萝卜、欧洲油菜(叶缘具锯齿)、欧 洲油菜(叶缘无锯齿)、诸葛菜、芥菜、芸薹。

2.2.2 花粉外壁结构和厚度的比较 根据光学显微 镜下观察的供试 6 个十字花科植物材料花粉外壁结 构绘制花粉外壁的层次结构图(图4)。结果显示:诸 葛菜的花粉外壁仅有 2 层结构,即绿色部分的外壁外 层(包含覆盖层和基柱)和黄色部分的基层,其余5 个 材料的花粉外壁都有较为明显的3层结构,包括绿色 部分的外壁外层(包含覆盖层和基柱)、黄色部分的 基层和蓝色部分的外壁内层。比较而言,在光学显微 镜下,芸薹花粉的外壁内层较薄,萝卜花粉外壁的基 柱不明显,芸薹、欧洲油菜(叶缘无锯齿)、欧洲油菜 (叶缘具锯齿)、芥菜和萝卜花粉的外壁外层均较厚, 且外壁外层明显厚于内层。

比较统计结果(表1)发现,供试6个十字花科植物材料中,诸葛菜的花粉外壁最薄,萝卜的花粉外壁 也较薄,芸薹的花粉外壁最厚。供试6个十字花科植物材料花粉外壁厚度由小到大依次为诸葛菜、萝卜、 欧洲油菜(叶缘无锯齿)、欧洲油菜(叶缘具锯齿)、芥 菜、芸薹。

『: 外壁外层(T部分为覆盖层,C部分为基柱) Sexine (part T is tectum, and part C is collumellae); []: 基层 Foot layer; []: 外壁内层 Endexine.

1: 诸葛菜 Orychophragmus violaceus (Linn.) O. E. Schulz; 2: 芸薹 Brassica campestris Linn.; 3: 欧洲油菜(叶缘无锯齿)B. napus Linn. (leaf margin without serration); 4: 欧洲油菜(叶缘具锯齿)B. napus (leaf margin with serration); 5: 芥菜 B. juncea (Linn.) Czern.; 6: 萝卜 Raphanus sativus Linn.

图 4 供试十字花科植物花粉外壁层次结构的线描图 Fig. 4 Illustrition of hierarchical structure of pollen exine of test Brassicaceae species

2.2.3 花粉极面弧形弯曲率的比较 比较供试6个 十字花科植物花粉的极面弧形弯曲率(表1)发现,欧 洲油菜(叶缘无锯齿)的花粉极面弧形弯曲率最小, 表明欧洲油菜(叶缘无锯齿)的花粉沟较为宽、平,极 面叶状深裂度小;芥菜的花粉极面弧形弯曲率最大, 表明芥菜花粉的花粉沟较为窄、深,极面叶状深裂度 大。供试6个十字花科植物材料的花粉极面弧形弯 曲率由小到大依次为欧洲油菜(叶缘无锯齿)、芸薹、 欧洲油菜(叶缘具锯齿)、诸葛菜、萝卜、芥菜。

2.2.4 花粉花面纹饰发网般盈度花人小的比较 对 扫描电镜下供试6个十字花科植物材料花粉的表面 纹饰进行观察和比较,结果见图 5。观察发现,诸葛 菜花粉表面纹饰的网眼内无疣状结构,而芸薹、欧洲 油菜(叶缘无锯齿)、欧洲油菜(叶缘具锯齿)、芥菜和 萝卜花粉表面纹饰的网眼内均具有疣状结构,但网眼 内疣状结构的明显程度不同。比较而言,花粉表面网 眼内疣状结构最明显的是芸薹,其次是欧洲油菜(叶 缘无锯齿)、萝卜和欧洲油菜(叶缘具锯齿),最不明 显的是芥菜。

对供试 6 个十字花科植物材料花粉网眼密度和 大小进行比较(表1),发现诸葛菜的花粉网眼密度最 大,其他 5 个材料的花粉网眼密度较为接近,集中在 0.3~0.5 µm⁻²;然而,花粉网眼直径最大的是芥菜和 萝卜,接下来依次是芸薹、欧洲油菜(叶缘无锯齿)和 欧洲油菜(叶缘具锯齿)、诸葛菜。

箭头示疣状结构 The arrow shows the vertucous structure.

1: 诸葛菜 Orychophragmus violaceus (Linn.) O. E. Schulz; 2: 芸薹 Brassica campestris Linn.; 3: 欧洲油菜(叶缘无锯齿) B. napus Linn. (leaf margin without serration); 4: 欧洲油菜(叶缘具锯齿) B. napus (leaf margin with serration); 5: 芥菜 B. juncea (Linn.) Czern.; 6: 萝卜 Raphanus sativus Linn.

图 5 扫描电镜下供试十字花科植物花粉的表面纹饰及网眼内疣状结构 Fig. 5 Reticulate ornamentation and verrucous structure in lumina of test Brassicaceae species under scanning electron microscope

3 讨论和结论

研究证实,花粉形状和大小、外壁厚度、表面纹饰 以及网眼大小和密度等几何形态参数可作为鉴定植 物种间差异的可靠依据[14-16,20]。本研究中,供试6个 十字花科植物材料的花粉形状和大小、外壁层次结构 和厚度、极面弧形弯曲率、网眼内疣状结构及网眼密 度和大小等均具有明显差异,尤其是在网眼内疣状结 构的有无和明显程度上,这些花粉形态特征均可用于 十字花科植物分类和地层化石花粉的鉴定等。供试 6个十字花科植物材料中,只有诸葛菜花粉的网眼内 无疣状结构,其他5个材料花粉网眼内均具有不同明 显程度的疣状结构,可尝试根据花粉网眼内疣状结构 的有无和明显程度鉴定十字花科植物花粉形态的种 间差异。花粉的极面弧形弯曲率是描述花粉极面叶 状深裂度、花粉沟宽度和深度的一个形态学参数,本 研究首次利用该参数研究十字花科植物花粉的极面 和花粉沟形态特征,研究结果对十字花科植物花粉形 态研究具有一定的参考价值。然而,由于光学显微镜 不同聚焦层面的十字花科植物花粉外壁层次结构存 在成像差异,因此,不建议将此参数直接作为鉴别十 字花科植物花粉的依据。后续研究可使用透射电镜 对十字花科植物花粉的超薄切片进行观察,以期对十 字花科植物花粉的外壁层次结构进行更准确的比较。 本研究中6个材料花粉大小差异明显,花粉形状(赤 道面观)为椭球形或长椭球形,花粉外壁厚薄也不 同,诸葛菜花粉的外壁最薄;6个材料花粉的网眼直 径与密度差异明显,其中诸葛菜花粉网眼直径最小, 网眼密度最大。

十字花科植物花粉形态的精细观察和定量分析 对于鉴别该科种间差异具有重要的科学意义,特别是 在植物分类和孢粉环境考古等领域。本研究结果显 示:供试十字花科植物材料花粉的大小(赤道面直径 和极面直径)、外壁层次结构和厚度、极面弧形弯曲 率、网眼直径和密度及网眼内疣状结构的有无和明显 程度是区分供试6个十字花科植物材料花粉的关键 几何形态参数。根据上述花粉特征,供试6个十字花 科植物材料大致可分为2个大类,诸葛菜的花粉形态 特征较为独特(花粉赤道面观为长椭球形,外壁较 薄,网眼内无疣状结构,且网眼直径小、密度大),单 独为一类,其他5个材料为另一类(花粉赤道面观为 椭球形或长椭球形,外壁较厚,网眼内有疣状结构,且 网眼直径大、密度小)。综上所述,花粉网眼内的疣 状结构及部分花粉几何形态参数可作为区分诸葛菜 与其他5个材料的依据。

传统的花粉鉴定与定量分析非常费时,且鉴定种 类的分辨率较低。在光学显微镜下,离散在沉积物中 的花粉鉴定只能停留在属级水平,有些甚至只能到科水平。在扫描电镜下,虽然花粉鉴定更精准,但在技术上仍然有局限性,可操作性较差。目前,有研究者应用人工智能技术(artificial intelligence, AI)成功识别不同植物的花粉^[21,22],未来应重点关注如何更好地利用该技术识别十字花科植物花粉,提高十字花科植物化石花粉属和种分类水平。

致谢:中国科学院南京地质古生物研究所张玄丝老师、方艳 老师和陈怡芸同学以及荷兰阿姆斯特丹大学魏彩霞同学均对 本研究提供了较大的帮助,在此致以衷心的感谢!

参考文献:

- [1] AL-SHEHBAZ I A. A generic and tribal synopsis of the Brassicaceae (Cruciferae) [J]. Taxon, 2012, 61(5): 931–954.
- [2] GABR D G I. Taxonomic importance of pollen morphology for some species of Brassicaceae[J]. Pakistan Journal of Biological Sciences, 2018, 21(5): 215-223.
- [3] 中国科学院中国植物志编辑委员会.中国植物志:第三十三卷[M].北京:科学出版社,1978:546-547.
- [4] 方嘉禾,常汝镇.中国作物及其野生近缘植物:经济作物卷[M].北京:中国农业出版社,2007:83-116.
- [5] HUANG T C. Pollen Flora of Taiwan [M]. Taipei: Ching-Hwa Press, 1972: 99-100.
- [6] NAKAMURA J. Diagnostic Characters of Pollen Grains of Japan: Part 1 [M]. Kochi: Osaka Museum of Natural History, 1980: 28-29.
- [7] 王伏雄, 钱南芬, 张玉龙, 等. 中国植物花粉形态 [M]. 2 版.
 北京:科学出版社, 1995.
- [8] 许清海. 中国常见栽培植物花粉形态: 地层中寻找人类痕迹之借鉴[M]. 北京: 科学出版社, 2015: 19-20.
- [9] KHALIK K A, VAN DEN BERG R G, VAN DER MAESEN L J G, et al. Pollen morphology of some tribes of Brassicaceae from Egypt and its systematic implications[J]. Feddes Repertorium, 2002, 113 (3/4): 211-223.
- [10] 王淑芬, 马国佐. 十字花科 6 种植物花粉的超微结构观察[J]. 四川大学学报(自然科学版), 1997, 34(3): 359-362.
- [11] 张渝华, 蔡继炯. 阴山荠属、泡果荠属、棒毛荠属和岩荠属的扫描电镜观察[J]. 西北植物学报, 1989, 9(4): 224-231.

- [12] AMINA H, AHMAD M, BHATTI G R, et al. Microscopic investigation of pollen morphology of Brassicaceae from Central Punjab-Pakistan[J]. Microscopy Research and Technique, 2020, 83: 446-454.
- [13] 张成合,马德伟,尚爱芹,等.十字花科蔬菜花粉电镜扫描分析[J].河北农业大学学报,1999,22(4):69-74.
- [14] OZGISI K, KOYUNCU O, SEZER O, et al. Comparative pollen morphology studies of two endemic Noccaea Moench (Brassicaceae) taxa from Turkey[J]. Communications Faculty of Sciences University of Ankara Series C: Biology, 2018, 27(2): 79-87.
- [15] KARAISMAILOĞLU M C, EROL O. Pollen morphology of some taxa of *Thlaspi* L. sensulato (Brassicaceae) from Turkey, and its taxonomical importance[J]. Palynology, 2019, 43(2): 244-254.
- [16] YANG S, ZHENG Z, MAO L, et al. Pollen morphology of selected crop plants from southern China and testing pollen morphological data in an archaeobotanical study [J]. Vegetation History and Archaeobotany, 2018, 27(6): 781–799.
- [17] ERDTMAN G. The acetolysis method: a revised description [J].
 Svensk Botanisk Tidskrift, 1960, 54: 561-564.
- [18] HALBRITTER H, ULRICH S, GRÍMSSON F, et al. Illustrated Pollen Terminology[M]. 2nd ed. Gewerbestrasse: Springer, 2018: 129-436.
- [19] 埃尔特曼 G. 孢粉学手册[M]. 中国科学院植物研究所古植物 研究室孢粉组,译. 北京:科学出版社, 1978: 6-41.
- [20] 杨利欢,吴雨涵,裴 鑫,等.部分花楸属植物的花粉形态特征及聚类分析[J].植物资源与环境学报,2019,28(3): 84-90.
- [21] ROMERO I C, KONG S, FOWLKES C C, et al. Improving the taxonomy of fossil pollen using convolutional neural networks and super resolution microscopy [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (45): 28496-28505.
- [22] FRANCE I, DULLER A W G, DULLER G A T, et al. A new approach to automated pollen analysis [J]. Quaternary Science Reviews, 2000, 19: 537-546.

(责任编辑: 佟金凤)