基于转录组分析金属离子对绿绒蒿属 3 种植物 花瓣呈色的影响

罗 军,陈丽琦,李拓键,区 智,屈 燕①

(西南林业大学园林园艺学院 国家林业和草原局西南风景园林工程技术研究中心 云南省功能性花卉资源及产业化技术工程研究中心,云南 昆明 650224)

摘要:为探究金属离子对绿绒蒿属(*Meconopsis* Vig.)3种植物花瓣呈色的影响,测定了盛开期全缘叶绿绒蒿[*M. integrifolia*(Maxim.)Franch.]、红花绿绒蒿(*M. punicea* Maxim.)和川滇绿绒蒿(*M. wilsonii* Grey-Wilson)花瓣中7种 金属离子(包括Fe³⁺、Mg²⁺、Ca²⁺、K⁺、Mn²⁺、Cu²⁺和Zn²⁺)含量,对3个花期花瓣进行转录组分析。结果表明:盛开期, 全缘叶绿绒蒿花瓣中7种金属离子含量显著(*P*<0.05)高于红花绿绒蒿和川滇绿绒蒿;红花绿绒蒿花瓣中Fe³⁺、 Mg²⁺、K⁺、Mn²⁺和Zn²⁺含量显著低于川滇绿绒蒿,Cu²⁺和Ca²⁺含量显著高于川滇绿绒蒿。全缘叶绿绒蒿花瓣中Fe³⁺、 Mg²⁺、K⁺ CO 富集条目以及镁螯合酶活性、钾离子稳态和对锌离子的反应条目存在明显表达的差异 unigene 数量在供试绿绒蒿属 3种植物中总体最多,锌离子结合和锰离子结合条目存在明显表达的差异 unigene 数量在供试绿绒蒿属 3种植物中最少,臻合钙离子释放到细胞溶质条目中仅全缘叶绿绒蒿花瓣的差异 unigene 明显 表达。红花绿绒蒿花瓣中,亚铁结合、镁离子结合、钙离子结合、钾离子结合、钾离子转运条目和锌离子结合条目存 在明显表达的差异 unigene 数量在供试绿绒蒿属 3种植物中最多,仅三价铁结合条目存在明显表达的差异 unigene 数量在供试绿绒蒿属 3种植物中最多,Mg²⁺、K⁺和Cu²⁺相关 GO 富集条目以及亚铁结合、铁离子的细胞内 螯合、对锌离子的反应、钙离子结合条目存在明显表达的差异 unigene 数量在供试绿绒蒿属 3种植物中最多,Mg²⁺、K⁺和Cu²⁺相关 GO 富集条目以及亚铁结合、铁离子的细胞内 螯合、对锌离子的反应、钙离子结合条目存在明显表达的差异 unigene 数量在供试绿绒蒿属 3种植物中最多,Mg²⁺、K⁺和Cu²⁺相关 GO 富集条目以及亚铁结合、铁离子的细胞内 螯合、对锌离子的反应、钙离子结合条目存在明显表达的差异 unigene 数量在供试绿绒蒿属 3种植物中最多,Mg²⁺、K⁺和Cu²⁺和关 GO 富集条目以及亚铁结合、铁离子的细胞内 螯合、对锌离子的反应、钙离子结合条目存在明显表达的差异 unigene 数量在供试绿绒蒿属 3种植物中最多,Mg²⁺、K⁺和Cu²⁺和关 GO 富集条目以及亚铁结合、铁离子的细胞内 螯合、对锌离子的反应、钙离子结合条目存在明显表达的差异 unigene 数量在供试绿绒蒿属 3种植物中最多,Mg²⁺、K⁺和Cu²⁺和²⁺和Cu²⁺影响红花绿绒蒿花瓣呈色, Fe³⁺、Mg²⁺、Mn²⁺和Cu²⁺影响红花绿绒蒿花瓣呈色。

关键词:绿绒蒿属;花色;金属离子;差异 unigene;基因表达

中图分类号: Q786; S68 文献标志码: A 文章编号: 1674-7895(2023)05-0016-12 DOI: 10.3969/j.issn.1674-7895.2023.05.02

Analysis on effects of metal ions on the petal color of three species in *Meconopsis* based on transcriptome LUO Jun, CHEN Liqi, LI Tuojian, OU Zhi, QU Yan^① [Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China], *J. Plant Resour.* & Environ., 2023, **32**(5): 16–27

Abstract: In order to explore the effects of metal ions on the petal color of three species in *Meconopsis* Vig., contents of seven metal ions (including Fe³⁺, Mg²⁺, Ca²⁺, K⁺, Mn²⁺, Cu²⁺, and Zn²⁺) in petals of *M. integrifolia* (Maxim.) Franch., *M. punicea* Maxim., and *M. wilsonii* Grey-Wilson at the blooming stage were measured, and transcriptome analyses were conducted for petals at three flowering stages. The

作者简介:罗 军(1998—),男,四川内江人,硕士研究生,主要从事园林植物资源开发与利用方面的研究。

收稿日期: 2022-10-30

基金项目:国家自然科学基金项目(32160404; 31460218);云南省万人计划青年拔尖人才项目(YNWR-QNBJ-2019-211)

^①通信作者 E-mail: flyersw@ 163.com

引用格式: 罗 军,陈丽琦,李拓键,等. 基于转录组分析金属离子对绿绒蒿属 3 种植物花瓣呈色的影响[J]. 植物资源与环境学报, 2023, 32 (5):16-27.

results show that at the blooming stage, contents of seven metal ions are significantly (P < 0.05) higher in petals of *M. integrifolia* than in petals of *M. punicea* and *M. wilsonii*; contents of Fe³⁺, Mg²⁺, K⁺, Mn²⁺, and Zn^{2+} in petals of *M. punicea* are significantly lower than those of *M. wilsonii*, and contents of Cu^{2+} and Ca^{2+} are significantly higher than those of *M. wilsonii*. In petals of *M. integrifolia*, evidently expressed differential unigenes in Fe³⁺-, Fe²⁺-, and Cu²⁺-related GO enrichment items, and magnesium chelatase activity, potassium homeostasis and response to zinc ion items are the most among three test species in Meconopsis in general, while those in zinc ion binding and manganese ion binding items are the least, and differential unigenes in the release of sequestered calcium ion into cytosol item only evidently express in petals of *M. integrifolia*. In petals of *M. punicea*, evidently expressed differential unigenes in ferrous iron binding, magnesium ion binding, calcium ion binding, potassium ion binding, potassium ion transport, and zinc ion binding items are the most among three test species in *Meconopsis*, and only those in ferric iron binding item are the least among three test species in *Meconopsis*. In petals of *M. wilsonii*, evidently expressed differential unigenes in cellular calcium ion homeostasis and manganese ion binding items are the most among three test species in *Meconopsis*, and those in Mg^{2+} , K⁺- and Cu²⁺-related GO enrichment items, and ferrous iron binding, intracellular sequestering of iron ion, response to zinc ion and calcium ion binding items are the least among three test species in Meconopsis in general. In conclusion, it is speculated that Cu^{2+} and Ca^{2+} affect the petal color of *M. integrifolia*, Fe^{2+} , Mg^{2+} , Mn^{2+} , K^+ , and Cu^{2+} affect the petal color of *M. punicea*, and Fe^{3+} , Mg^{2+} , Mn^{2+} , and Cu^{2+} affect the petal color of M. wilsonii.

Key words: Meconopsis Vig.; flower color; metal ion; differential unigene; gene expression

绿绒蒿属(Meconopsis Vig.)植物隶属于罂粟科 (Papaveraceae),一年生或多年生草本,主要分布在 青藏高原,是传统藏药植物^[1]。绿绒蒿属植物株型 姿态优美,花朵硕大秀丽,花色丰富,有黄色、白色、蓝 色、蓝紫色、紫红色和酒红色等^[2]。花色是绿绒蒿属 植物关键分类特征之一,其中全缘叶绿绒蒿[M. integrifolia (Maxim.) Franch.]花黄色^[3],红花绿绒蒿 (M. punicea Maxim.)花红色^[4],川滇绿绒蒿(M. wilsonii Grey-Wilson)花蓝紫色^[5],是绿绒蒿属植物的 典型花色,为绿绒蒿属植物花色形成机制研究的理想 材料。

花色作为植物的重要生物性状,是多因子综合作 用的结果,除环境因子外,还受细胞介质 pH 值^[6]、花 色素种类和含量^[7]以及金属离子等影响。已有研究 结果表明:金属离子在越橘(*Vaccinium vitis-idaea* Linn.)^[8]、金花茶组(Sect. Chrysantha Chang)植物^[9] 和郁金香(*Tulipa gesneriana* Linn.)^[10]等植物花瓣呈 色中具有重要作用。高字等^[11]认为,Na⁺、K⁺和 Ca²⁺ 对软枣猕猴桃[Actinidia arguta (Sieb. et Zucc.) Planch. ex Miq.]花青素稳定性无显著影响,但 Mg²⁺ 和 Cu²⁺却促使花青素发生氧化反应,降低花青素稳 定性。Miller 等^[12]认为,自然状态下法国万寿菊 (*Tagetes patula* Linn.)的花瓣呈淡黄色,Cu²⁺使花色 转变为褐色,Cr³⁺使花瓣呈暗橘色。在大花绿绒蒿 (*M. grandis* Prain)中,Fe³⁺、Mg²⁺、黄酮醇和矢车菊素 衍生物相结合能形成一种区分于常见花色素的新型 金属复合体色素,进而形成花瓣中的蓝色色素^[13]。 Shoji 等^[14]认为,自然条件下部分郁金香品种的花萼 呈现紫红色,在花瓣底部喷施外源 Fe³⁺,花萼颜色会 转变为蓝紫色。由此表明金属离子的种类和含量与 花瓣颜色的形成有密切联系,研究不同颜色绿绒蒿属 植物花瓣中的金属离子对探究绿绒蒿属植物花瓣的 呈色有重要意义。

鉴于此,本研究对不同花色的绿绒蒿属植物(包括全缘叶绿绒蒿、红花绿绒蒿和川滇绿绒蒿)盛开期花瓣中金属离子含量进行测定,同时利用转录组数据分析并筛选出这3种植物花瓣中金属离子相关的差异表达 unigene,探究不同金属离子对绿绒蒿属3种植物花瓣呈色的影响,以期为绿绒蒿属植物的引种栽培、花色调控和园林应用提供理论依据。

1 材料和方法

1.1 材料

供试全缘叶绿绒蒿、红花绿绒蒿和川滇绿绒蒿采 集于 2021 年 6 月,根据开花时期的形态及颜色等特 征分为花蕾期(花蕾里的花瓣完全着色)、开裂期(花 蕾裂开,花瓣从花蕾露出)和盛开期(花瓣完全展开) (图1)。在花开放过程中,全缘叶绿绒蒿花瓣黄色程 度逐渐加深,红花绿绒蒿花瓣红色程度逐渐变浅,而 川滇绿绒蒿花瓣蓝紫色程度先加深后变浅。每种植 物选择长势相近的5株,各时期每株选择1朵生长状 态及大小相似的花朵。自然光照下,使用英国皇家园 艺协会比色卡(Royal Horticultural Society colour chart,RHSCC)确定各时期花瓣颜色。绿绒蒿属3种 植物的采集信息见表1。

花蕾期和开裂期从3株植株分别取2g花瓣样 品,盛开期从3株植株分别取5g花瓣样品,即为3次 重复。采集前用体积分数75%乙醇对采样工具进行 消毒,采集后迅速用锡箔纸包裹花瓣,装入密封袋后 立即置于干冰桶中,带回实验室后移入-80℃超低温 冰箱保存、备用。

1.2 方法

18

1.2.1 花瓣中金属离子含量测定 参考黄奇等^[15]的

MiImage: Constraint of the second second

Mi: 全缘叶绿绒蒿 M. integrifolia (Maxim.) Franch.; Mp: 红花绿绒蒿 M. punicea Maxim.; Mw: 川滇绿绒蒿 M. wilsonii Grey-Wilson. 从左到右 依次为花蕾期、开裂期和盛开期 From left to right are the bud stage, cracking stage, and blooming stage.

图 1 不同花期绿绒蒿属 3 种植物的花部形态 Fig. 1 Floral morphology of three species in *Meconopsis* Vig. at different flowering stages

种类 Species	采集地点 ¹⁾ Collection location ¹⁾	经度 Longitude	纬度 Latitude	花期 Flowering stage	英国皇家园艺协会比色卡卡号 Card No. of Royal Horticultural Society colour chart
全缘叶绿绒蒿 M. integrifolia	YL	E100°10'56"	N37°00′10″	花蕾期 Bud stage	黄绿色 145D Yellow-green 145D
				开裂期 Cracking stage	黄绿色 150D Yellow-green 150D
				盛开期 Blooming stage	黄绿色 150B Yellow-green 150B
红花绿绒蒿 M. punicea	SP	E103°20'01"	N32°56′08″	花蕾期 Bud stage	红色 45A Red 45A
				开裂期 Cracking stage	红色 43A Red 43A
				盛开期 Blooming stage	红色 43B Red 43B
川滇绿绒蒿 M. wilsonii	JZ	E102°50'05"	N26°05'01"	花蕾期 Bud stage	紫红色 75D Red-purple 75D
				开裂期 Cracking stage	紫罗兰色 N80A Purple-violet N80A
				盛开期 Blooming stage	蓝紫色 N81C Violet N81C

表1 绿绒蒿属3种植物花部的采集信息 Table 1 Collection information of flowers of three species in *Meconopsis* Vig.

¹⁾ YL: 云南省丽江市玉龙雪山 Jade Dragon Snow Mountain in Lijiang City of Yunnan Province; SP: 四川省阿坝藏族羌族自治州松潘县 Songpan County in Aba Tibetan and Qiang Autonomous Prefecture of Sichuan Province; JZ: 云南省昆明市轿子雪山 Jiaozi Snow Mountain in Kunming City of Yunnan Province.

方法,取盛花期绿绒蒿属 3 种植物花瓣于 60 ℃烘干 24 h,每种植物准确称取 3 份,每份 0.5 g,然后于 700 ℃碳化0.5 h,500 ℃灰化 3.5 h,冷却后以体积分 数 5% 硝酸定容至50 mL,待测。分别取质量浓度 1 000 μ g · mL⁻¹ Fe³⁺、Mg²⁺、Ca²⁺、K⁺、Mn²⁺、Cu²⁺和 Zn²⁺标准液,用超纯水配制不同梯度的标准工作液, 其中,Fe³⁺、Mg²⁺、Ca²⁺和 Zn²⁺工作液的质量浓度范围 为1.0~10.0 μ g · mL⁻¹,K⁺工作液的质量浓度范围为 10.0~100.0 μ g · mL⁻¹,Mn²⁺和 Cu²⁺工作液的质量浓 度范围为0.1~1.0 μ g · mL⁻¹。使用 AA-7000 型原子 火焰吸收光谱仪(日本岛津公司)测定标准工作液的 吸光值,以吸光值为纵坐标(y)、各金属离子含量为 横坐标(x)绘制标准曲线。Fe³⁺的线性回归方程为 y=0.007 5x-0.008 7(r=0.999 7),Mg²⁺的线性回归方 程为y=0.077 4x+0.771 6(r=0.999 9),Ca²⁺的线性回 归方程为y=0.051 9x+0.028 9(r=0.999 6),K⁺的线 性回归方程为y=0.009 2x+1.180 5(r=0.999 5), Mn²⁺的线性回归方程为y=0.018 0x-0.001 4(r=0.999 7),Cu²⁺的线性回归方程为y=0.153 2x-0.004 9(r=0.999 5),Zn²⁺的线性回归方程为y=0.049 7x+0.005 6(r=1.000 0)。加标回收率良好,均 在 95%以上。测定盛开期花瓣样品待测液的吸光 值,根据标准曲线计算待测液金属离子含量,进一步 计算花瓣样品中 Fe³⁺、Mg²⁺、Ca²⁺、K⁺、Mn²⁺、Cu²⁺和 Zn²⁺7种金属离子含量。

1.2.2 转录组数据分析

1.2.2.1 总 RNA 提取及检测 使用 TIANGEN 植物 总 RNA 提取试剂盒[天根生化科技(北京)有限公司]提取各时期花瓣样品的总 RNA,经质量体积分数 1%琼脂糖凝胶电泳和 NanoDrop 2000 超微量紫外分 光光度计(美国 ThermoFisher 公司)检测其质量、浓度 和纯度。

1.2.2.2 转录组测序及拼接 委托深圳华大基因科 技有限公司建立 cDNA 文库,将质量检测合格的 cDNA 使用 HiSeq[™]2000 测序平台(美国 Illumina 公 司)测序,利用 SOAPnuke 软件将测序所得 raw read 过滤,去除冗余与质量低的序列,得到 clean read,利 用 Trinity(v2.0.6)软件组装,再利用 TGICL 软件对转 录本进行聚类去冗余,获得最终的 unigene。

1.2.2.3 Unigene 功能注释 通过 BLAST 软件将所 得 unigene 与 GO、KOG、KEGG、SwissProt、NT 和 NR 数据库比对,预测 unigene 的氨基酸序列之后,利用 HMMER 软件与 Pfam 数据库比对,获得 unigene 的注 释信息。

1.2.2.4 差异 unigene 分析 利用 RSEM(v1.2.8) 软

表 2	用于实时荧光定量 PCR 的引物	
Table	2 Primers for real-time fluorescent quantitative PC	R

件计算各样品中 unigene 的表达水平。用 FPKM (fragments per kilobase of transcript per million fragments mapped)值表示 unigene 的相对表达量,基于 27 个花瓣样品转录本的相对表达量,以 | $\log_2 FC$ | 大于等于 1、FDR 小于等于 0.05 为基准 [FC 为差异倍数(fold change), FDR 为错误发现率(false discovery rate)],利用 DESeq2 软件检测任意 2 个阶段间的差异表达转录本,筛出差异 unigene,将差异 unigene 进行 GO 功能分类,同时利用 R 软件中的 phyper 函数进行富集分析,计算 p 值,然后对 p 值进行 FDR 校正,通常 Q 值 (p 值的错误发现率)小于等于 0.05 的功能视为显著富集,对其进行 GO 富集分析。

1.2.2.5 实时荧光定量 PCR(qRT-PCR)验证 参照 "1.2.2.1"提取和检测花瓣样品的总 RNA,逆转录参 照 Goldenstar[™] RT6 cDNA Synthesis Kit 试剂盒(北京 擎科生物科技有限公司)说明书,qRT-PCR 以 actin (CL3969. Contig4_All)为内参基因,利用 Primer Premier 6.0软件设计引物,引物序列见表 2。实时荧 光定量 PCR 反应体系参照 2×T5 Fast qPCR Mix (SYBR Green I)(北京擎科生物科技有限公司),使 用 LightCycler[©]480 实时荧光定量 PCR 仪(上海土森 视觉科技有限公司)扩增,qRT-PCR 程序为:95 ℃预 变性 2 min;95 ℃变性 30 s、56 ℃退火 15 s、72 ℃延伸

Unimum ID	引物序列(5'→3') Primer sequence (5'→3')			
Unigene ID	正向引物 Forward primer	反向引物 Reverse primer		
CL9348.Contig7_All	TGGCAGCTGCAAATGGAGTA	GCTCCCGATGCCTTAGATCC		
CL9381.Contig32_All	AAGGATTGGTACTGCTGGCC	GCCAGAGCCACCCTTATTGT		
Unigene13589_All	ACCGCCCACCATGATGATTT	TGGGTCCTTCTAGACGGGAG		
Unigene37626_All	CCATGAGTAGCTCGGCATGT	GCTGTACGCCTACTACGACC		
Unigene44886_All	CCAGCAGTGGTACCAGACTG	TTGAGAAAGGAGCCGGTCAC		
Unigene64395_All	TCTTGCGGGAACTCTCCAAC	CGGATCACAGGTACACCTCG		
CL3969.Contig4_All	TCAGCCCCTCGTCTGTGATA	GCCCCATACCAACCATCACA		

30 s,35 个循环。采用 2^{-ΔΔ c}_T法^[16] 计算 unigene 的相 对表达量。

1.3 数据处理和统计分析

利用 EXCEL 2019 软件整理和分析数据,利用 SPSS 26.0 统计分析软件对数据进行统计分析,利用 Origin 2020 和 TBtools 软件作图,其中,利用 TBtools 软件中的 HeatMap 程序绘制 unigene 表达热图,均一 化后的相对表达量大于 0.5 表示差异 unigene 明显 表达。

2 结果和分析

2.1 盛开期绿绒蒿属 3 种植物花瓣中金属离子含量的比较

盛开期绿绒蒿属 3 种植物花瓣中金属离子含量 见表 3。由表 3 可见:盛开期绿绒蒿属 3 种植物花瓣 的7种金属离子中均为K⁺含量最高,Cu²⁺含量最低。 全缘叶绿绒蒿花瓣中7种金属离子含量均显著(P< 0.05)高于红花绿绒蒿和川滇绿绒蒿;红花绿绒蒿花 瓣中Fe³⁺、Mg²⁺、K⁺、Mn²⁺和Zn²⁺含量显著低于川滇绿 绒蒿,Ca²⁺和Cu²⁺含量显著高于川滇绿绒蒿。从绿绒 蒿属3种植物花瓣中金属离子含量的差异倍数来看, 全缘叶绿绒蒿与红花绿绒蒿之间以及红花绿绒蒿与 川滇绿绒蒿之间金属离子含量差异倍数较大的均为 Fe³⁺、Mn²⁺和Zn²⁺,全缘叶绿绒蒿与川滇绿绒蒿之间 金属离子含量差异倍数最大的为Fe³⁺,其次是Ca²⁺和 Mg²⁺,说明Fe³⁺含量在绿绒蒿属不同种类间的差异均 较大。

表 3 盛开期绿绒蒿属 3 种植物花瓣中金属离子含量($\bar{X}\pm SD$) Table 3 Contents of metal ions in petals of three species in *Meconopsis* Vig. ($\bar{X}\pm SD$)

种类 ¹⁾ Species ¹⁾	各金属离子含量/($\mu g \cdot g^{-1}$) ²⁾ Content of each metal ion ²⁾						
	Fe ³⁺	Mg^{2+}	Ca ²⁺	K^+	Mn ²⁺	Cu ²⁺	Zn ²⁺
Mi	4 877.6±70.3a	4 280.7±22.4a	4 931.8±47.5a	49 496.9±184.4a	846.8±6.0a	63.3±1.5a	1 569.5±7.4a
Mp	$675.5 \pm 27.2 \mathrm{e}$	$1\ 029.2 \pm 2.2 c$	$1\ 734.6{\pm}9.2{\rm b}$	21 231.2 \pm 141.5c	$48.5 \pm 0.2 c$	$32.5 \pm 0.6 \mathrm{b}$	$52.3 \pm 0.8 c$
Mw	$1.161.4 \pm 54.7 \mathrm{b}$	$1 404.4 \pm 52.8 \mathrm{b}$	$1 \ 316.1 \pm 32.5 c$	22 898.3 \pm 443.6b	$325.8{\pm}1.3{\rm b}$	$24.4\pm0.4c$	$662.4 \pm 12.5 \mathrm{b}$

¹⁾ Mi: 全缘叶绿绒蒿 M. integrifolia (Maxim.) Franch.; Mp: 红花绿绒蒿 M. punicea Maxim.; Mw: 川滇绿绒蒿 M. wilsonii Grey-Wilson. ²⁾ 同列中不同小写字母表示差异显著(P<0.05) Different lowercases in the same column indicate the significant (P<0.05) differences.

2.2 绿绒蒿属 3 种植物花瓣的转录组数据分析

2.2.1 转录组测序数据质量 对不同花期绿绒蒿属 3 种植物 27 个花瓣样品进行转录组测序,获得了 1 297.10 Mb 的 raw read,过滤并筛选后得到 1 175.19 Mb 的 clean read,平均每个花瓣样品获得 43.53 Mb 的 clean read,各花瓣样品的 Q20 和 Q30 的平均值分 别为 97.51%和 90.22%。共获得 411 557 个 unigene, 平均长度为 1 949 bp,N50 值为 2 754 bp,GC 含量为 38.49%。

2.2.2 数据库功能注释 将获得的 411 557 个 unigene 进行注释,被 GO、Pfam、KOG、KEGG、SwissProt、NT 和 NR 7 大数据库注释到的 unigene 共 318 657 个,占 unigene 总数的 77.4%。其中注释到 GO 数据库的 unigene 共 171 730 个,占 unigene 总数 的 41.7%。被注释的 unigene 分为 3 大类,包括生物 过程、细胞组成和分子功能,分别有 98 560、116 067 和 194 385 个,分别占 unigene 总数的 23.9%、28.2% 和 47.2%,其中,分子功能中注释 unigene 数超过 10 000 的二级分类有结合(87 710)、催化活性 (84 496)和转运蛋白活性(10 010)。

2.3 绿绒蒿属 3 种植物花瓣中金属离子相关差异 unigene 的 GO 富集分析

绿绒蒿属 3 种植物花瓣中金属离子相关差异 unigene 的 GO 富集结果见表 4。由表 4 可见: Fe³⁺和 Fe²⁺以及 Mg²⁺、Ca²⁺、K⁺、Mn²⁺、Cu²⁺、Zn²⁺相关差异 unigene 分别富集于 5、3、3、3、1、2 和 2 条 GO 条目中,

表 4 绿绒蒿属 3 种植物花瓣中金属离子相关差异 unigene 的 GO 富 集结果

 Table 4
 Result of GO enrichment of differential unigenes related to metal ions in petals of three species in *Meconopsis* Vig.

金属离子 Metal ion	GO 条目 ID GO item ID	GO 条目 GO item	$n^{1)}$
Fe ³⁺ , Fe ²⁺	GO:0008199	三价铁结合 Ferric iron binding	12
	GO:0008198	亚铁结合 Ferrous iron binding	7
	GO:0006826	铁离子转运 Iron ion transport	12
	GO:0006880	铁离子的细胞内螯合 Intracellular sequestering of iron ion	5
	GO:0004325	亚铁螯合酶活性 Ferrochelatase activity	11
Mg^{2+}	GO:0000287	镁离子结合 Magnesium ion binding	14
	GO:0016851	镁螯合酶活性 Magnesium chelatase activity	8
	GO:0015693	镁离子转运 Magnesium ion transport	7
Ca ²⁺	GO:0005509	钙离子结合 Calcium ion binding	12
	GO:0051209	螯合钙离子释放到细胞溶质 Release of sequestered calcium ion into cytosol	3
	GO:0006874	细胞钙离子稳态 Cellular calcium ion homeostasis	11
K^+	GO:0030955	钾离子结合 Potassium ion binding	16
	GO:0055075	钾离子稳态 Potassium ion homeostasis	12
	GO:0006813	钾离子转运 Potassium ion transport	10
Mn ²⁺	GO:0030145	锰离子结合 Manganese ion binding	14
Cu ²⁺	GO:0005507	铜离子结合 Copper ion binding	14
	GO:0006825	铜离子转运 Copper ion transport	6
Zn ²⁺	GO:0008270	锌离子结合 Zinc ion binding	18
	GO:0010043	对锌离子的反应 Response to zinc	5
		ion	

¹⁾n: 差异 unigene 数量 Number of differential unigenes.

其中,Fe³⁺和Fe²⁺相关差异 unigene 富集的 GO 条目数 量最多,包括三价铁结合、亚铁结合、铁离子转运、铁 离子的细胞内螯合和亚铁螯合酶活性;锌离子结合条

A: 三价铁结合 Ferric iron binding; B: 亚铁结合 Ferrous iron binding; C: 铁离子转运 Iron ion transport; D: 铁离子的细胞内螯合 Intracellular sequestering of iron ion; E: 亚铁螯合酶活性 Ferrochelatase activity. 图中 标尺表示均一化后的相对表达量 The scale in the figure represents the relative expression after normalization. Mi1, Mi2, Mi3: 分别为全缘叶绿绒 蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. integrifolia* (Maxim.) Franch., respectively; Mp1, Mp2, Mp3: 分别为红花绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. punicea* Maxim., respectively; Mw1, Mw2, Mw3: 分别为川滇绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. wilsonii* Grey-Wilson, respectively.

图 2 绿绒蒿属 3 种植物花瓣中 Fe³⁺和 Fe²⁺相关差异 unigene 的表达 热图

Fig. 2 Heat map of the expression of Fe^{3+} - and Fe^{2+} -related differential unigenes in petals of three species in *Meconopsis* Vig.

目中的差异 unigene 数量最多(18)。

2.3.1 Fe³⁺和Fe²⁺相关GO 富集条目 绿绒蒿属3种 植物花瓣中 Fe³⁺和 Fe²⁺相关差异 unigene 的表达热图 见图 2。由图 2 可见:全缘叶绿绒蒿花瓣中各条目明 显表达的差异 unigene 数量均较多。三价铁结合条目 中,除Unigene41916_All 外,红花绿绒蒿花瓣中差异 unigene 的相对表达量较低;川滇绿绒蒿花瓣中仅 Unigene21411_All 和 Unigene41916_All 明显表达。亚 铁结合条目中,红花绿绒蒿花瓣中仅 Unigene23941_ All 在不同花期的相对表达量较低,川滇绿绒蒿花瓣 中仅 Unigene38400_All 在开裂期明显表达。铁离子 转运条目中,除 Unigene41916_All 外,全缘叶绿绒蒿 花瓣中差异 unigene 的相对表达量在开花过程中总体 呈先升高后降低的趋势;红花绿绒蒿花瓣中仅 Unigene41916_All 和 Unigene30354_All 有表达,川滇 绿绒蒿花瓣中仅 Unigene41916 All 和 Unigene37626 All 明显表达。铁离子的细胞内螯合条目中,红花绿 绒蒿花瓣中 Unigene30354_All 在花蕾期明显表达,川 滇绿绒蒿花瓣中 Unigene164988_All 在花蕾期和盛开 期明显表达。亚铁螯合酶活性条目中,红花绿绒蒿花 瓣中 Unigene268239 _ All、Unigene161123 _ All 和 Unigene268237_All 有明显表达,且其相对表达量在 开花过程中呈先升高后降低的趋势:川滇绿绒蒿花瓣 中除 Unigene94643 _ All、Unigene105961 _ All 和 Unigene156789_All 外,其他差异 unigene 表达不 明显。

2.3.2 Mg²⁺相关 GO 富集条目 绿绒蒿属3种植物 花瓣中 Mg^{2+} 相关差异 unigene 的表达热图见图 3。由 图 3 可见:镁离子结合条目中,全缘叶绿绒蒿花瓣中 明显表达的差异 unigene 中, Unigene104503_All、 Unigene18125_All 和 CL3868.Contig1_All 的相对表达 量在开花过程中呈升高趋势;红花绿绒蒿花瓣中差异 unigene 的相对表达量在开花过程中总体表现为先升 高后降低;川滇绿绒蒿花瓣中明显表达的差异 unigene 主要是 CL9348.Contig7_All、Unigene302777_ All 和 Unigene332283_All,其相对表达量在开花过程 中也呈先升高后降低的趋势。镁螯合酶活性条目中, 全缘叶绿绒蒿花瓣中明显表达的差异 unigene 数量 较多;而红花绿绒蒿和川滇绿绒蒿花瓣中明显表达 的差异 unigene 数量较少,其中,红花绿绒蒿花 瓣中Unigene64395 _ All、Unigene96662 _ All 和 Unigene104686_All 明显表达,川滇绿绒蒿花瓣中

A: 镁离子结合 Magnesium ion binding; B: 镁螯合酶活性 Magnesium chelatase activity; C: 镁离子转运 Magnesium ion transport. 图中标尺表 示均一化后的相对表达量 The scale in the figure represents the relative expression after normalization. Mi1, Mi2, Mi3: 分别为全缘叶绿绒蒿花蕾 期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. integrifolia* (Maxim.) Franch., respectively; Mp1, Mp2, Mp3: 分别为红花绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. punicea* Maxim., respectively; Mw1, Mw2, Mw3: 分别为川滇绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. wilsonii* Grey-Wilson, respectively.

图 3 绿绒蒿属 3 种植物花瓣中 Mg²⁺相关差异 unigene 的表达热图 Fig. 3 Heat map of the expression of Mg²⁺-related differential unigenes in petals of three species in *Meconopsis* Vig.

Unigene64395_All、Unigene81539_All 和 Unigene2709_ All 明显表达。镁离子转运条目中,全缘叶绿绒蒿花 瓣中 CL458. Contig43_All、Unigene41826_All 和 Unigene28725_All 明显表达,红花绿绒蒿花瓣 中 Unigene212513_All、Unigene131644_All 和 Unigene167437_All 明显表达,川滇绿绒蒿花瓣 中 Unigene212513_All、CL8483. Contig8_All 和 Unigene28725_All 明显表达。

2.3.3 Ca²⁺相关 GO 富集条目 绿绒蒿属 3 种植物 花瓣中 Ca²⁺相关差异 unigene 的表达热图见图 4。由 图 4 可见:钙离子结合条目中,红花绿绒蒿花瓣中明 显表达的差异 unigene 数量最多,其次为全缘叶绿绒 蒿,而川滇绿绒蒿花瓣中明显表达的差异 unigene 数 量最少。螯合钙离子释放到细胞溶质条目中,全缘叶 绿绒蒿花瓣中 Unigene107949_All、Unigene107945_All 和 Unigene76013_All 在开花过程中明显表达,红花绿

A: 钙离子结合 Calcium ion binding; B: 螯合钙离子释放到细胞溶质 Release of sequestered calcium ion into cytosol; C: 细胞钙离子稳态 Cellular calcium ion homeostasis. 图中标尺表示均一化后的相对表达量 The scale in the figure represents the relative expression after normalization. Mi1,Mi2,Mi3: 分别为全缘叶绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. integrifolia* (Maxim.) Franch., respectively; Mp1,Mp2,Mp3: 分别为红花绿绒蒿花蕾期、开裂 期和盛开期 Bud stage, cracking stage, and blooming stage of *M. punicea* Maxim., respectively; Mw1,Mw2,Mw3: 分别为川滇绿绒蒿花蕾期、开 裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. wilsonii* Grey-Wilson, respectively.

图 4 绿绒蒿属 3 种植物花瓣中 Ca²⁺相关差异 unigene 的表达热图 Fig. 4 Heat map of the expression of Ca²⁺-related differential unigenes in petals of three species in *Meconopsis* Vig.

绒蒿和川滇绿绒蒿花瓣中这3个差异 unigene 的相对表达量均较低。细胞钙离子稳态条目中,绿绒蒿属3种植物花瓣中明显表达的差异 unigene 差异较大,全缘叶绿绒蒿花瓣中 CL7794. Contig6_All, Unigene40892_All 和 CL7794. Contig2_All 明显表达,红花绿绒蒿花瓣中 CL7431. Contig21_All、CL8529. Contig5_All 和 Unigene73196_All 明显表达,川滇绿 绒蒿花瓣中 Unigene307276_All、Unigene63608_All、Unigene307271_All、Unigene307273_All 和 Unigene307272_All 明显表达。

2.3.4 K⁺相关 GO 富集条目 绿绒蒿属 3 种植物花 瓣中 K⁺相关差异 unigene 的表达热图见图 5。由图 5 可见:钾离子结合条目中,红花绿绒蒿花瓣中明显表 达的差异 unigene 数量最多;其次为全缘叶绿绒 蒿;川滇绿绒蒿仅 4 个差异 unigene 明显表达, 其 中 Unigene173262_All、CL9381. Contig32_All 和

A: 钾离子结合 Potassium ion binding; B: 钾离子稳态 Potassium ion homeostasis; C: 钾离子转运 Potassium ion transport. 图中标尺表示均一 化后的相对表达量 The scale in the figure represents the relative expression after normalization. Mi1, Mi2, Mi3: 分别为全缘叶绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. integrifolia* (Maxim.) Franch., respectively; Mp1, Mp2, Mp3: 分别为红花绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. punicea* Maxim., respectively; Mw1, Mw2, Mw3: 分别为川滇绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. wilsonii* Grey-Wilson, respectively.

图 5 绿绒蒿属 3 种植物花瓣中 K⁺相关差异 unigene 的表达热图 Fig. 5 Heat map of the expression of K⁺-related differential unigenes in petals of three species in *Meconopsis* Vig.

Unigene339291_All 的相对表达量在开花过程中呈逐 渐降低的趋势。钾离子稳态条目中,绿绒蒿属 3 种植 物花瓣中明显表达的差异 unigene 差异较大,全缘叶 绿绒蒿花瓣中 Unigene58784_All、CL6642. Contig12_ All、CL6642. Contig38_All、CL6642. Contig31_All、 CL6642. Contig9_All 和 CL6642. Contig39_All 在开裂期 和盛开期明显表达,且除 Unigene58784_All 和 CL6642.Contig9_All外,其他4个差异 unigene 的相对 表达量在开花过程中呈逐渐升高的趋势;红花绿绒蒿 花瓣中 CL6642. Contig1_All、CL6642. Contig27_All、 CL6642.Contig32_All、CL6642. Contig26_All、CL6642. Contig13_All 和 CL6642.Contig24_All 明显表达,且除 CL6642.Contig27_All 外,其他 5 个差异 unigene 的相 对表达量在开花过程中均呈先降低后升高的趋势;川 滇绿绒蒿花瓣中无明显表达的差异 unigene。钾离子 转运条目中,全缘叶绿绒蒿花瓣中差异 unigene 总体 无明显表达(除 Unigene 31522_All 外);红花绿绒蒿花 瓣中明显表达的差异 unigene 数量最多,但其相对表 达量在开花过程中的变化趋势存在差异;在开花过 程中,川滇绿 绒 蒿花 瓣 中 Unigene69123_All 和 Unigene173429_All 的相对表达量呈先升高后降低的 趋势,Unigene331561_All 的相对表达量呈逐渐升高的 趋势。

2.3.5 Mn²⁺相关 GO 富集条目 绿绒蒿属 3 种植物 花瓣中 Mn²⁺相关差异 unigene 的表达热图见图 6。由 图 6 可见:锰离子结合条目中,全缘叶绿绒蒿花瓣中 Unigene336679_All、Unigene75693_All、Unigene66376_ All 和 Unigene31339_All 明显表达,但其相对表达量 在开花过程中的变化趋势不一致;红花绿绒蒿花瓣中 明显表达的差异 unigene 数量较多,且相对表达量在 开花过程中总体呈降低趋势,如 Unigene257235_All 和 Unigene66186_All;川滇绿绒蒿花瓣中明显表达的 差异 unigene 数量最多,且在开花过程中,大部分差异 unigene 的相对表达量呈逐渐降低的趋势(如 Unigene66186_All 和 Unigene255534_All),少数差异 unigene 的相对表达量呈先升高后降低的趋势(如

图中标尺表示均一化后的相对表达量 The scale in the figure represents the relative expression after normalization. Mi1, Mi2, Mi3: 分别为全缘叶 绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. integrifolia* (Maxim.) Franch., respectively; Mp1, Mp2, Mp3: 分别为红花绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. punicea* Maxim., respectively; Mw1, Mw2, Mw3: 分别为川滇绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. wilsonii* Grey-Wilson, respectively.

图 6 绿绒蒿属 3 种植物花瓣中 Mn²⁺相关(锰离子结合)差异 unigene 的表达热图

Fig. 6 Heat map of the expression of Mn^{2+} -related (manganese ion binding) differential unigenes in petals of three species in *Meconopsis* Vig.

Unigene48515_All) 。

2.3.6 Cu²⁺相关 GO 富集条目 绿绒蒿属3种植物 花瓣中 Cu^{2+} 相关差异 unigene 的表达热图见图 7。由 图7可见:铜离子结合条目中,绿绒蒿属3种植物花 瓣均存在大量明显表达的差异 unigene, 以全缘叶绿 绒蒿花瓣中明显表达的差异 unigene 数量最多,且其 中大部分差异 unigene 的相对表达量在开花过程中 呈逐渐升高的趋势,如 CL1723. Contig2_All、 Unigene3029_All 和 Unigene54639_All;红花绿绒蒿花 瓣中明显表达的差异 unigene 的相对表达量在开花过 程中的变化趋势存在差异,部分差异 unigene 的相对 表达量呈逐渐降低的趋势(如 Unigene332749_All、 Unigene59760_All 和 Unigene453_All), 部分差异 unigene 的相对表达量呈先升高后降低的趋势(如 Unigene150192_All 和 Unigene230440_All);川滇绿 绒蒿花瓣中明显表达的差异 unigene 的相对表达量 在开花过程中总体呈先升高后降低的趋势, 如 Unigene332749 _ All、 Unigene44886 _ All 和 Unigene24329_All。铜离子转运条目中,全缘叶绿绒 蒿花瓣中明显表达的差异 unigene 数量最多(4),除

A: 铜离子结合 Copper ion binding; B: 铜离子转运 Copper ion transport. 图中标尺表示均一化后的相对表达量 The scale in the figure represents the relative expression after normalization. Mi1, Mi2, Mi3: 分别为全缘叶 绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. integrifolia* (Maxim.) Franch., respectively; Mp1, Mp2, Mp3: 分别为红花绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. punicea* Maxim., respectively; Mw1, Mw2, Mw3: 分别为川滇绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. wilsonii* Grey-Wilson, respectively.

图 7 绿绒蒿属 3 种植物花瓣中 Cu²⁺相关差异 unigene 的表达热图 Fig. 7 Heat map of the expression of Cu²⁺-related differential unigenes in petals of three species in *Meconopsis* Vig.

Unigene111170_All 外,其他 3 个差异 unigene 的相对 表达量在开花过程中均呈先升高后降低的趋势;红花 绿绒蒿花瓣中仅 CL8182. Contig4_All 和 CL8182. Contig5_All 明显表达,其相对表达量在开花过程中呈 逐渐降低的趋势;川滇绿绒蒿仅 CL8182. Contig5_All 明显表达,其相对表达量在开花过程中呈先降低后升 高的趋势。

2.3.7 Zn²⁺相关 GO 富集条目 绿绒蒿属 3 种植物 花瓣中 Zn²⁺相关差异 unigene 的表达热图见图 8。由 图 8 可见:锌离子结合条目中,全缘叶绿绒蒿花瓣中 明显表达的差异 unigene 数量最少,其相对表达量在 开花过程中的变化趋势差异较大;红花绿绒蒿花瓣中 明显表达的差异 unigene 数量最多,在开花过程中, Unigene39244_All、Unigene55928_All、Unigene253766_ All 和 Unigene42220_All 的相对表达量呈先升高后降 低的趋势, Unigene332253_All、Unigene45551_All 和 Unigene256195_All 的相对表达量呈逐渐升高的趋 势,而 CL9410.Contig10_All 和 Unigene111383_All 的 相对表达量呈逐渐降低的趋势;在开花过程中,川滇

A: 锌离子结合 Zinc ion binding; B: 对锌离子的反应 Response to zinc ion. 图中标尺表示均一化后的相对表达量 The scale in the figure represents the relative expression after normalization. Mi1,Mi2,Mi3: 分别为全缘叶绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. integrifolia* (Maxim.) Franch., respectively; Mp1,Mp2,Mp3: 分别为红花绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. punicea* Maxim., respectively; Mw1,Mw2,Mw3: 分别为川滇绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. wilsonii* Grey-Wilson, respectively.

图 8 绿绒蒿属 3 种植物花瓣中 Zn²⁺相关差异 unigene 的表达热图 Fig. 8 Heat map of the expression of Zn²⁺-related differential unigenes in petals of three species in *Meconopsis* Vig. 绿绒蒿花瓣中 Unigene88077_All、Unigene335024_All、 Unigene307637_All 和 Unigene332253_All 的相对表达 量呈先升高后降低的趋势, Unigene74051_All、 Unigene313940_All、Unigene45551_All 和 Unigene256195_All 的相对表达量呈逐渐升高的趋势。对锌离子的反应条目中,全缘叶绿绒蒿花瓣中 Unigene91043_All、Unigene60679_All 和 Unigene81741_ All 明显表达;红花绿绒蒿花瓣中 Unigene42528_All 和 Unigene335547_All 明显表达;川滇绿绒蒿花瓣中 仅 Unigene335547_All 明显表达。

2.4 绿绒蒿属 3 种植物花瓣中差异 unigene 的实时 荧光定量 PCR 验证

从上述与绿绒蒿属 3 种植物花瓣中金属离子相 关的差异 unigene 中,随机挑选 6 个明显表达的差异 unigene 进行实时荧光定量 PCR 验证,结果见图 9。 由图 9 可见:绿绒蒿属 3 种植物花瓣中 6 个差异 unigene 的相对表达量在开花过程中的变化趋势与转 录组数据基本一致,说明转录组数据以及筛选出的与 金属离子相关的差异 unigene 的表达具有较高的可靠 性和准确性。

Mi1,Mi2,Mi3:分别为全缘叶绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. integrifolia* (Maxim.) Franch., respectively; Mp1,Mp2,Mp3:分别为红花绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. punicea* Maxim., respectively; Mw1,Mw2,Mw3:分别为川滇绿绒蒿花蕾期、开裂期和盛开期 Bud stage, cracking stage, and blooming stage of *M. wilsonii* Grey-Wilson, respectively.

图 9 绿绒蒿属 3 种植物花瓣中金属离子相关的部分差异 unigene 的实时荧光定量 PCR 验证结果 Fig. 9 Verification results of real-time fluorescence quantitative PCR on some metal ion-related differential unigenes in petals of three species in *Meconopsis* Vig.

3 讨论和结论

花瓣中的金属离子含量对开花过程花瓣呈色有 十分重要的影响,是影响花色的主要因子之一。盛开 期,全缘叶绿绒蒿花瓣中 Fe³⁺、Mg²⁺、Ca²⁺、K⁺、Mn²⁺、 Cu²⁺和 Zn²⁺ 7 种金属离子含量均显著(*P*<0.05)高于 红花绿绒蒿和川滇绿绒蒿;红花绿绒蒿花瓣中 Fe^{3+} 、 Zn²⁺、 Mn^{2+} 、 Mg^{2+} 和 K⁺含量显著低于川滇绿绒蒿, Cu²⁺和 Ca²⁺含量显著高于川滇绿绒蒿。菊花 (*Chrysanthemum morifolium* Ramat.)花色形成的表型 研究结果表明: Fe^{3+} 、 Mg^{2+} 、 Al^{3+} 和 Ca²⁺与菊花红色品 种花瓣中的花青素共同作用对花瓣起到增色作用;而 菊花白色品种花瓣中以黄酮类化合物为主,这4种金 属离子对其花瓣颜色无明显影响^[17]。本研究中,盛 开期全缘叶绿绒蒿花瓣 Fe³⁺和 Mg²⁺含量显著高于红 花绿绒蒿和川滇绿绒蒿,且其花瓣富含黄酮类化合 物[18],并在 Fe³⁺与 Fe²⁺相关 GO 富集条目存在明显表 达的差异 unigene 数量在供试绿绒蒿属 3 种植物中最 多,在 Mg²⁺相关 GO 富集条目中明显表达的差异 unigene 数量也较多, 推测其花瓣中富含的 Fe^{3+} 和 Mg²⁺与黄酮类化合物未共同作用,进而没有对花瓣起 增色作用,说明 Fe³⁺和 Mg²⁺并非黄色花形成的主要 原因。红花绿绒蒿花瓣中明显表达的差异 unigene 数 量在亚铁结合和镁离子结合条目中较多,推测其花瓣 中 Fe²⁺和 Mg²⁺与花青素共同作用对花瓣有增色作 用,使其花瓣在开花过程中呈红色,并且红花绿绒蒿 富集于亚铁螯合酶活性和镁螯合酶活性条目的差异 unigene 存在明显表达,可能 Fe²⁺和 Mg²⁺在花瓣中的 螯合作用也影响其花色形成。对川滇绿绒蒿在 Fe³⁺、 Fe²⁺和 Mg²⁺相关 GO 富集条目所富集的差异 unigene 整体分析,发现除三价铁结合条目外,川滇绿绒蒿花 瓣中明显表达的差异 unigene 数量在供试绿绒蒿属 3种植物中最少,镁离子结合条目上明显表达的差异 unigene 数量相对较多,如 CL9348. Contig7_All、 Unigene302777_All 和 Unigene332283_All, 且这 3 个 差异 unigene 的相对表达量均呈现先升高后降低的趋 势,与该种花瓣蓝紫色程度在开花过程先加深后变浅 相吻合。已有研究结果表明:川滇绿绒蒿花瓣中矢车 菊素可与 Fe³⁺形成蓝色复合物^[19],而在大花绿绒蒿 的蓝色花瓣中影响花色形成的新型金属复合体色素 是由 Fe³⁺、Mg²⁺与黄酮醇、矢车菊素衍生物结合形 成^[13],由此分析川滇绿绒蒿花瓣呈蓝紫色可能与 Fe³⁺、Mg²⁺形成了金属复合物有一定的联系。

花色研究结果显示:白及[*Bletilla striata* (Thunb. ex Murray) Rchb. f.]花瓣中总花青素含量与 Zn^{2+} 含量呈显著正相关关系,而与 Mn^{2+} 含量则呈显著负相 关关系^[20]。虽然全缘叶绿绒蒿花瓣中 Mn^{2+} 和 Zn^{2+} 含量最高,但 Mn^{2+} 和 Zn^{2+} 相关 GO 富集条目(对锌离子 的反应条目除外)存在明显表达的差异 unigene 数量 在供试绿绒蒿属 3 种植物中最少,分析该植物花瓣中 Zn²⁺和 Mn^{2+} 相关 unigene 的不明显表达可能影响了 Zn²⁺和 Mn^{2+} 对花色的作用,这 2 种金属离子可能与全 缘叶绿绒蒿花色无关;虽然红花绿绒蒿花瓣中 Zn^{2+} 和 Mn^{2+} 相关 GO 富集条目中明显表达的差异 unigene 较 多,但其花瓣中 Zn^{2+} 和 Mn^{2+} 含量最低,推测红花绿绒 蒿花瓣中花青素的形成与 Mn²⁺有一定联系;川滇绿 绒蒿花瓣中锌离子结合条目中存在明显表达的差异 unigene,但是对锌离子的反应条目仅 Unigene335547_ All 明显表达,而 Mn²⁺相关 GO 富集条目中明显表达 的差异 unigene 数量在供试绿绒蒿属 3 种植物中最 多,推测与 Zn²⁺相比较其花瓣颜色更受 Mn²⁺影响。

有关'芙蓉李'(Prunus salicina 'Furong')花色 苷稳定性的研究结果表明:高含量 K⁺有助于花色苷 构型稳固^[21]。高赛等^[22]研究了长春花[Catharanthus roseus (Linn.) G. Don]的花色,认为随着 Ca²⁺含量的 升高,花瓣的亮度逐渐升高,而红度降低,花色呈现变 浅的趋势。赵雨朦等^[23]通过水培试验测定不同 Zn²⁺ 和 Cu2+含量下翅碱蓬[Suaeda salsa (Linn.) Pall.]的 花青素和叶绿素含量,认为低含量 Zn²⁺和 Cu²⁺能够促 进翅碱蓬花青素和叶绿素的合成及植株生长。李慧 波^[24]认为,大量 Ca²⁺和 Mg²⁺与花色素(矢车菊素与 飞燕草素的含量比为10:1)形成的螯合物可能是紫 露草(Tradescantia ohiensis Raf.)花瓣呈蓝紫色的主要 原因。全缘叶绿绒蒿花瓣中 Ca2+含量最高, Ca2+相关 GO 富集条目中钙离子结合和细胞钙离子稳态条目 存在的明显表达差异 unigene 数量仅次于红花绿绒 蒿,螯合钙离子释放到细胞溶质条目中仅全缘叶绿绒 蒿花瓣中的差异 unigene 明显表达:该种类花瓣在 Cu²⁺相关 GO 富集条目存在明显表达的差异 unigene 数量在供试绿绒蒿属3种植物中最多,其中铜离子结 合条目中明显表达的差异 unigene 主要呈逐渐升高的 趋势,与开花过程中黄色花瓣颜色的加深相对应。结 合高赛等^[22]的研究结果,全缘叶绿绒蒿花瓣中 Ca²⁺ 含量最高,其花瓣呈亮度较高的黄色,推测其花色形 成与花瓣中 Ca2+含量相关,全缘叶绿绒蒿花瓣颜色可 能受 Cu²⁺和 Ca²⁺及相关 GO 富集条目中差异 unigene 明显表达的影响。红花绿绒蒿花瓣在钙离子结合条 目中明显表达的差异 unigene 数量在供试绿绒蒿属 3种植物中最多,但螯合钙离子释放到细胞溶质条目 中无明显表达的差异 unigene;其花瓣中 Ca²⁺含量仅 次于全缘叶绿绒蒿,但其花瓣呈鲜艳的红色,推测花 瓣中 Ca²⁺与其花色形成无关: K⁺相关 GO 富集条目 中,红花绿绒蒿花瓣明显表达的差异 unigene 数量除 钾离子稳态条目仅次于全缘叶绿绒蒿外,其余条目均 为最高;而该花瓣在铜离子结合条目有较多数量明显 表达的差异 unigene, 铜离子转运条目中 2 个差异 unigene 也存在表达,这些 unigene 相对表达量总体在

开花过程中随花期表现为持续降低,与花瓣的红色程 度在开花过程中变浅相吻合,由此推测红花绿绒蒿的 花色形成与 K⁺和 Cu²⁺相关差异 unigene 的表达有密 切联系。川滇绿绒蒿花瓣中 Ca2+含量最低,且其螯合 钙离子释放到细胞溶质条目中无明显表达的差异 unigene,结合李慧波^[24]的研究结果,分析该花瓣呈蓝 紫色未受到 Ca²⁺影响:川滇绿绒蒿花瓣在 K⁺相关 GO 富集条目上明显表达的差异 unigene 数量在供试绿绒 蒿属3种植物中均最少,故推测 K⁺不是影响蓝紫色 花形成的关键金属离子:该植物花瓣在铜离子结合条 目中存在较多明显表达的差异 unigene, 且其相对表 达量总体在开花过程中呈先升高后降低的趋势,与川 滇绿绒蒿蓝紫色花瓣在开花过程中呈先加深后变浅 的变化相对应,而在供试绿绒蒿属3种植物中川滇绿 绒蒿花瓣中 Cu²⁺含量最低,低含量 Cu²⁺又会促进花 青素的合成,由此推测蓝紫色花的形成与低含量的 Cu²⁺及其相关差异 unigene 的表达有关。

绿绒蒿属不同种类开花过程中的花色存在明显 差异,本研究从生理和分子2个方面联合探究了7种 金属离子与花瓣呈色的关系,认为各金属离子及其相 关的差异 unigene 对花色的形成具有不同程度的调 控,尤其是 Fe³⁺和 Mg²⁺。目前对花色在分子层面的 研究已经越来越受到重视,但更多的还是停留于 KEGG 通路及相关花色素合成的基因,金属离子方面 还存在大量空白,需要进一步探究,进而为花色调控 机制提供更全面的理论依据,推进植物花色调控的研 究进程。

参考文献:

- GREY-WILSON C, RANKIN D W H, WU Z K. 700. Meconopsis wilsonii subsp. orientalis[J]. Curtis's Botanical Magazine, 2011, 28 (1): 32-46.
- [2] 陈丽琦, 严朋飞, 贾维嘉, 等. 威氏绿绒蒿(Meconopsis wilsonii) 花色相关基因 MwF3H 的克隆及表达分析[J]. 基因组学与应用 生物学, 2022, 41(4): 854-861.
- [3] 钟 涛,段旭宇,姜银银,等.全缘叶绿绒蒿的花内热量来源和 温度调节功能[J]. 广西植物,2020,40(9):1315-1322.
- [4] 陈红刚,赵文龙,晋 玲,等.红花绿绒蒿种子休眠及破除方法 研究[J]. 草地学报, 2021, 29(2): 402-406.
- [5] 严朋飞,张莹欣,贾维嘉,等.威氏绿绒蒿 MwF3'H 基因克隆与表达分析[J].分子植物育种,2022,20(19):6382-6387.
- [6] 翟宇慧, 吕嘉琪, 李 想, 等. 欧洲报春细胞液 pH 对花色形成 的作用机理初探[J]. 园艺学报, 2020, 47(3): 477-491.

- [7] 殷涵泰,尹俊梅,廖 易,等.基于秋石斛花朵颜色、色素分布及表皮细胞形态的表型分类[J].园艺学报,2021,48(10):1907-1920.
- [8] 张志博,李安文,李 勤,等. 越橘花色苷稳定性研究[J]. 食品研究与开发, 2013, 34(19): 5-8.
- [9] 姜丽娜,李纪元,童 冉,等.金花茶组植物花色与细胞内重要 环境因子的关系[J].广西植物,2019,39(12):1605-1612.
- [10] SHOJI K, MIKI N, NAKAJIMA N, et al. Perianth bottom-specific blue color development in *Tulip* cv. Murasakizuisho requires ferric ions[J]. Plant and Cell Physiology, 2007, 48(2): 243-251.
- [11] 高 字,刘怡菲,苏宏伟,等.软枣猕猴桃花青素加工稳定性研究[J]. 辽宁林业科技, 2019(3): 17-19, 78.
- [12] MILLER R, OWENS S J, RØRSLETT B. Plants and colour: flowers and pollination [J]. Optics and Laser Technology, 2011, 43: 282-294.
- [13] YOSHIDA K, KITAHARA S, ITO D, et al. Ferric ions involved in the flower color development of the Himalayan blue poppy, *Meconopsis grandis* [J]. Phytochemistry, 2006, 67 (10): 992-998.
- [14] SHOJI K, MOMONOI K, TSUJI T. Alternative expression of vacuolar iron transporter and ferritin genes leads to blue/purple coloration of flowers in *Tulip* cv. 'Murasakizuisho' [J]. Plant and Cell Physiology, 2010, 51(2): 215-224.
- [15] 黄 奇,郭佳炜,汪 琼,等.四种不同花色滇水金凤中金属 元素含量测定与分析[J].黑龙江农业科学,2019(1):86-89.
- [16] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta C_T}$ method[J]. Methods, 2001, 25(4): 402–408.
- [17] 白新祥. 菊花花色形成的表型分析[D]. 北京: 北京林业大学, 2007: 71-78.
- [18] QU Y, OU Z, WANG S. Coloration differences in three *Meconopsis* species: *M. punicea*, *M. integrifolia* and *M. wilsonnii* [J]. South African Journal of Botany, 2022, 150: 171-177.
- [19] 李瀚纯,张大生,刘青青,等.观赏植物蓝色花形成的机制[J].亚热带植物科学,2021,50(2):155-162.
- [20] XIE C Z, HU C, DENG X Y, et al. Relationship between flower color and cellular physicochemical factors in *Bletilla striata* [J]. Horticulturae, 2023, 9(4): 426.
- [21] 周丹蓉,林炎娟,方智振,等.理化因子对'芙蓉李'花色苷稳 定性的影响[J].热带作物学报,2019,40(2):275-280.
- [22] 高 赛,刘 佳,唐玉情,等.长春花不同花色品种呈色的关 键理化性质分析[J].经济林研究,2022,40(1):214-227.
- [23] 赵雨朦,魏海峰,李 悦,等. Zn²⁺、Cu²⁺对翅碱蓬生长的影响 研究[J].中国野生植物资源, 2020, 39(10): 7-13.
- [24] 李慧波. 影响单子叶植物蓝色花蓝色形成主要因子的研究
 [D]. 杨凌:西北农林科技大学, 2013: 24-25.
 (责任编辑:张明霞)