植物资源与环境学报, 2019, 28(4): 49-57 Journal of Plant Resources and Environment

干旱胁迫及复水对菊芋生长及 叶片光合和生理特性的影响

赵孟良^{a,b,①},赵文菊^{a,①},郭怡婷^a,钟启文^{a,b},任延靖^{a,b,②} (青海大学: a. 农林科学院青海省蔬菜遗传与生理重点实验室; b. 三江源生态和高原农牧业国家重点实验室,青海 西宁 810016)

摘要:以中国北方主栽菊芋(Helianthus tuberosus Linn.)品种'青芋2号'('Qingyu No. 2')为实验材料,采用盆栽人 工控水的方法进行干旱胁迫和复水,对菊芋的生长指标以及叶片的叶绿素相对含量、光合参数和生理指标进行分 析。结果表明:总体上看,除干旱胁迫初期外,重度干旱胁迫(T3)组菊芋的株高和节间长显著低于对照(CK)组,轻 度干旱胁迫(T1)组的株高和节间长与CK组差异不显著;复水后,3个处理组的株高和节间长无明显变化。在干旱 胁迫及复水期间,同一时间3个处理组及CK组间菊芋的茎粗几乎无显著差异。总体上看,随着胁迫时间延长, 3个处理组菊芋叶片中净光合速率、水分利用效率和过氧化氢酶(CAT)活性呈下降趋势,蒸腾速率先降低后升高, 叶绿素相对含量和可溶性蛋白质含量无明显变化,气孔导度和胞间 CO。浓度波动变化,总超氧化物歧化酶(T-SOD)活性明显升高。T1组菊芋叶片中过氧化物酶(POD)活性和脯氨酸(Pro)含量无明显变化,中度干旱胁迫 (T2)和T3组的POD活性和丙二醛(MDA)含量先升高后降低。复水后,3个处理组菊芋叶片中净光合速率、叶绿 素相对含量、MDA 含量和可溶性蛋白质含量无明显变化;素腾速率、气孔导度和胞间 CO,浓度先降低后升高,水分 利用效率先升高后降低,T-SOD和 CAT活性继续升高;T1和T2组的 POD活性先降低后升高,T3组的 POD活性则 继续降低;T1 组的 Pro 含量无明显变化,T2 和 T3 组的 Pro 含量显著降低。总体上看,与 CK 组相比,3 个处理组菊 芋叶片中净光合速率、水分利用效率、CAT活性和可溶性蛋白质含量降低,蒸腾速率、气孔导度、胞间 CO,浓度、T-SOD 活性和 MDA 含量升高, 叶绿素相对含量无明显变化; T1 组的 POD 活性较低, T2 和 T3 组的 POD 活性较高; T1 组的 Pro 含量与 CK 组接近, T2 和 T3 组的 Pro 含量在干旱胁迫初期低于 CK 组, 之后高于 CK 组。上述研究结果显 示:菊芋品种'青芋2号'具有一定的抗旱性,但在长时间的重度干旱胁迫下则会受到不可逆的伤害。

关键词: 菊芋; 干旱胁迫; 复水; 生长指标; 光合参数; 生理指标

中图分类号: Q945.78; S632.9 文献标志码: A 文章编号: 1674-7895(2019)04-0049-09 DOI: 10.3969/j.issn.1674-7895.2019.04.06

Effects of drought stress and rewatering on growth and leaf photosynthetic and physiological characteristics of *Helianthus tuberosus* ZHAO Mengliang^{a,b,①}, ZHAO Wenju^{a,①}, GUO Yiting^a, ZHONG Qiwen^{a,b}, REN Yanjing^{a,b,②} (Qinghai University: a. Academy of Agriculture and Forestry Sciences, Qinghai Key Laboratory of Vegetable Genetics and Physiology; b. State Key Laboratory of Plateau Ecology and Agriculture, Xining 810016, China), *J. Plant Resour.* & *Environ.*, 2019, **28**(4): 49–57

Abstract: Taking cultivar 'Qingyu No. 2' of *Helianthus tuberosus* Linn. cultivated mainly in northern China as experimental materials, drought stress and rewatering were carried out by potted and artificial water control method, growth indexes, and relative chlorophyll content, photosynthetic parameters, and

赵文菊(1999—),女,青海互助人,本科,主要从事蔬菜育种与生物技术方面的研究。

收稿日期: 2019-03-01

基金项目:青海省科学技术厅重点实验室项目(2017-ZJ-Y18);青海省自然科学青年基金项目(2019-ZJ-979Q);青海省农林科学院基金项目 (2018-NKY-006;2018-NKY-008);青海省蔬菜遗传与生理重点实验室基金项目(Sczdsys-2017-02)

作者简介:赵孟良(1986—),男,河南柘城人,博士,助理研究员,主要从事蔬菜育种与生物技术方面的研究。

①共同第一作者

²通信作者 E-mail: renyan0202@163.com

physiological indexes of leaves of *H. tuberosus* were analyzed. The results show that in general, except the early stage of drought stress, plant height and internode length of *H. tuberosus* in severe drought stress (T3) group are significantly lower than those in the control (CK) group, and those in mild drought stress (T1) group have no significant difference with those in CK group. After rewatering, there is no obvious change in plant height and internode length in three treatment groups. During drought stress and rewatering periods, there is almost no significant difference in stem diameter among three treatment groups and CK group at the same time. Overall, with prolonging of stress time, net photosynthetic rate, water use efficiency, and catalase (CAT) activity of leaves of H. tuberosus in three treatment groups appear the trend of decrease, transpiration rate first decreases and then increases, relative chlorophyll content and soluble protein content have no obvious change, stomatal conductance and intercellular CO₂ concentration show a fluctuation change, total superoxide dismutase (T-SOD) activity increases obviously. Peroxidase (POD) activity and proline (Pro) content in leaves of H. tuberosus in T1 group show no obvious change, and POD activity and malondialdehyde (MDA) content in moderate drought stress (T2) and T3 groups first increase and then decrease. After rewatering, net photosynthetic rate, relative chlorophyll content, MDA content, and soluble protein content in leaves of H. tuberosus in three treatment groups have no obvious change, transpiration rate, stomatal conductance, and intercellular CO₂ concentration first decrease and then increase, water use efficiency first increases and then decreases, T-SOD and CAT activities increase continuously. POD activity in T1 and T2 groups first decreases and then increases, while that in T3 group decreases continuously. Pro content in T1 group has no obvious change, while that in T2 and T3 groups decreases significantly. On the whole, compared with CK group, net photosynthetic rate, water use efficiency, CAT activity, and soluble protein content in leaves of H. tuberosus in three treatment groups decrease, transpiration rate, stomatal conductance, intercellular CO₂ concentration, T-SOD activity, and MDA content increase, while relative chlorophyll content has no obvious change; POD activity is lower in T1 group and higher in T2 and T3 groups. Pro content in T1 group is close to that of CK group, while that in T2 and T3 groups is lower and higher than that in CK group at the early and late stages of drought stress, respectively. The above results show that cultivar Qingyu No. 2' of H. tuberosus has a certain drought tolerance, but it will be irreversibly damaged under severe drought stress for a long time.

Key words: *Helianthus tuberosus* Linn.; drought stress; rewatering; growth index; photosynthetic parameter; physiological index

菊芋(Helianthus tuberosus Linn.)俗称洋姜^[1]、鬼 子姜,隶属于菊科(Asteraceae)向日葵属(Helianthus Linn.),为多年生宿根草本植物,原产于北美,18世纪 末引入中国,其主要加工利用部位为地下块茎,可作 为腌制咸菜的原料。近年来,菊芋在食品加工^[2]、生 物能源^[3]和动物饲料^[4]等方面得到广泛应用,并显 示出极大的发展潜力,成为具有重要开发价值的新兴 经济作物。此外,菊芋还具有极强的耐旱、耐贫瘠和 耐盐碱的能力,能够改善脆弱的生态环境,已成为西 部沙荒地区重要的防风固沙作物之一^[5]。

干旱作为世界上危害严重的灾害之一,长期困扰 着世界各国的农业生产^[6]。干旱胁迫下,鸭茅 (*Dactylis glomerata* Linn.)^[7]、大豆〔*Glycine max* (Linn.) Merr.]^[8]、谷子〔*Setaria italica* (Linn.) Beauv.]^[9]和多根葱(*Allium fistulosum* Linn.)^[10]等植 物的生长和生理指标均受到明显影响。目前,已有研 究者对干旱胁迫下菊芋各组织碳水化合物的变 化^[11]、不同菊芋品种抗旱性的比较^[12]、光合特征^[13] 和生理生化特性^[14]进行了研究,并对干旱胁迫及复 水后菊芋幼苗的生长及叶片中叶绿素含量^[15-16]进行 了研究,但干旱胁迫及复水对菊芋的生长、光合和生 理变化的综合影响效应尚不明确。

本研究选取中国北方主栽菊芋品种'青芋2号' ('Qingyu No. 2')为研究材料,研究了不同程度干旱 胁迫及复水对其生长及叶片光合和生理特性的影响, 以期了解菊芋的抗旱机制,为菊芋抗旱专用品种的选 育奠定基础。

1 材料和方法

1.1 材料

供试材料为青海大学农林科学院自主选育的菊 芋品种'青芋2号',中晚熟,加工专用型,为中国北 方地区的主栽品种。

1.2 方法

1.2.1 处理方法 实验于 2018 年 3 月在青海大学 农林科学院园艺研究所实验基地的旱棚内进行,采用 盆栽种植,盆高55 cm、口径40 cm。每盆装7.5 kg 基 质(园土和细沙的质量比为2:1),共4个处理,每个 处理80盆,3次重复,总计960盆。每盆种植1个块 茎,块茎质量 30 g,出苗后正常浇水,待出苗 80 d 后 (块茎开始形成)进行4个处理,浇水量分别为1200 (CK,对照,基质相对含水量 75%)、900(T1,轻度干 旱胁迫,基质相对含水量 65%)、600(T2,中度干旱胁 迫,基质相对含水量 55%)和 300 mL · d⁻¹(T3,重度 干旱胁迫,基质相对含水量45%),共处理26d,采用 隔日称量法保证各处理基质相对含水量稳定;随后统 一复水,浇水量为1200 mL·d⁻¹。分别测定干旱胁 迫1、2、3、5、7、9、12、15、18、22 和 26 d 以及复水 4、 8 和 12 d 菊芋植株生长指标及叶片中叶绿素相对含 量、光合参数和生理指标。

1.2.2 生长指标测量 对干旱胁迫及复水期间各处 理植株的株高、茎粗和节间长进行测量。采用卷尺 (精度 0.1 cm)测量株高(植株底部到主枝顶端的高 度),采用游标卡尺(精度 0.01 mm)测量茎粗(植株 主枝基部第 2 节最粗处直径),采用游标卡尺测量节 间长(主枝上最长节间的长度)。所有指标均重复测 量 3 次。

1.2.3 叶片中叶绿素相对含量、光合参数和生理指标测定 采样时间均为上午的9:00至10:00,取植株距离顶端20 cm处的新鲜叶片。采用 CCM-200 Plus 手持式叶绿素仪(美国 OPTI-SCIENCES 公司)测定叶片中叶绿素相对含量。于晴日上午9:00至 10:00,采用 ECA-PB0402 光合测定仪(北京益康农科技有限公司)在光照强度1200 μmol·m⁻²·s⁻¹条件下测定叶片光合参数。采用购自南京建成生物工程研究所的总超氧化物歧化酶(T-SOD)活性检测试剂盒、过氧化物酶(POD)活性检测试剂盒、过氧化氢酶(CAT)活性测试盒、植物丙二醛(MDA)含量测试 盒、脯氨酸(Pro)含量测试盒和双缩脲蛋白质含量检测试剂盒分别测定叶片中T-SOD 活性、POD 活性、CAT 活性、MDA 含量、Pro 含量和可溶性蛋白质含量。所有指标均重复测定3次。

1.3 数据统计和处理

采用 EXCEL 2007 和 SPSS 19.0 软件进行数据统 计和分析,采用 ANOVA 进行方差分析。

2 结果和分析

2.1 干旱胁迫及复水对菊芋生长指标的影响

干旱胁迫及复水对菊芋生长指标的影响见表 1。 由表 1 可以看出:干旱胁迫 2~9 d,3 个处理组及 对照(CK)组菊芋株高增长较快,之后增长较慢;复水 后,中度干旱胁迫(T2)组的株高增长量略高于其他 组。干旱胁迫 1~3 d,同一时间 3 个处理组菊芋的株 高显著高于 CK 组;干旱胁迫 5~26 d,同一时间 CK 组和轻度干旱胁迫(T1)组菊芋的株高总体上显著高 于 T2 和重度干旱胁迫(T3)组,其中,干旱胁迫 26 d,

表 1 干旱胁迫及复水对菊芋生长指标的影响($\bar{X}\pm SD$) Table 1 Effects of drought stress and rewatering on growth indexes of *Helianthus tuberosus* Linn. ($\bar{X}\pm SD$)

	不同处理菊芋的株高/cm ²⁾							
时间/d	Plant height of <i>H. tuberosus</i> in different treatments ²⁾							
Time	СК	T1	T2	Т3				
1	135. 50±0. 14c	139.71±0.01b	142.75±0.64a	135.55±2.62c				
2	136.00±0.92d	144. $05{\pm}0.92{\rm c}$	$146.45 \pm 1.06 \mathrm{b}$	148.85±1.45a				
3	159.00±4.53b	163. 80±0. 57a	163. 20±0. 71a	163.75±1.77a				
5	168.20±1.11b	172. 75±0. 64a	165.40 \pm 0.14c	173. 25±0. 21a				
7	173.23±1.19c	184. 05±0. 92a	166.80 \pm 0.36d	175.70±1.57b				
9	178. 50 ± 1.56 b	184. 83±1. 76a	176.23 \pm 1.36b	$175.95{\pm}0.92{\rm b}$				
12	179.85±0.35b	185.00±0.57a	$177.85{\pm}1.77{\rm bc}$	$177.55 \pm 1.07c$				
15	186. 55±1. 06a	185. 95±2. 33a	$178.70 \pm 0.85 \mathrm{b}$	178.45 \pm 0.35b				
18	187. 50±1. 41a	188. 80±0. 42a	$179.25 \pm 0.07 \mathrm{b}$	179.85±1.34b				
22	189. 98±2. 12a	189. 10±1. 13a	$180.00{\pm}1.98\mathrm{b}$	180.25 \pm 2.33b				
26	197. 35±2. 62a	191. $50\pm 0.42b$	$185.55 \pm 1.06c$	180.45±1.77d				
4′ ¹⁾	199. 50±1. 56a	193.05 \pm 2.62b	190. 10 \pm 0. 28b	180. $50\pm1.84c$				
8′1)	199. 80±5. 09a	199.20±2.97ab	193.65 \pm 0.64b	181.35 \pm 0.49c				
12′1)	201. 35±1. 34a	199.60±4.10a	198. 20±0. 99a	$181.80 \pm 3.25 b$				
	不同处理菊芋的茎粗/mm ²⁾							
时间/d Time -	Stem diameter of <i>H. tuberosus</i> in different treatments ²⁾							
Time	СК	T1	T2	Т3				
1	14.48±1.24a	14 26+0 54a	14 82+1 30a	14.21 ± 0.16				
2		11.20±0.514	I II OZZIII DOU	14. 21±0. 10a				
	15.46±1.17a	15. 27±0. 95a	14. 90±1. 72a	14. 75±1. 03b				
3	15. 46±1. 17a 16. 82±0. 37a	15. 27±0. 95a 16. 59±1. 89a	14. 90±1. 72a 16. 89±2. 62a	14. 75±1. 03b 15. 90±1. 22b				
3 5	15. 46±1. 17a 16. 82±0. 37a 18. 56±0. 43a	15. 27±0. 95a 16. 59±1. 89a 17. 77±0. 89a	14. 90±1. 72a 16. 89±2. 62a 17. 82±0. 85a	14. $75 \pm 1.03b$ 15. $90 \pm 1.22b$ 17. $72 \pm 0.44a$				
3 5 7	15. 46±1. 17a 16. 82±0. 37a 18. 56±0. 43a 18. 73±0. 30a	15. $27\pm0.95a$ 16. $59\pm1.89a$ 17. $77\pm0.89a$ 18. $94\pm0.49a$	14. $90\pm1.72a$ 14. $90\pm1.72a$ 16. $89\pm2.62a$ 17. $82\pm0.85a$ 18. $55\pm0.42a$	14. 75±1. 03b 15. 90±1. 22b 17. 72±0. 44a 17. 91±1. 10a				
3 5 7 9	15. 46±1. 17a 16. 82±0. 37a 18. 56±0. 43a 18. 73±0. 30a 19. 23±0. 51a	15. 27±0. 95a 16. 59±1. 89a 17. 77±0. 89a 18. 94±0. 49a 19. 10±0. 28a	14. 90±1. 72a 16. 89±2. 62a 17. 82±0. 85a 18. 55±0. 42a 19. 14±0. 46a	14. 75±1. 03b 15. 90±1. 22b 17. 72±0. 44a 17. 91±1. 10a 19. 00±0. 77a				
3 5 7 9 12	15. 46±1. 17a 16. 82±0. 37a 18. 56±0. 43a 18. 73±0. 30a 19. 23±0. 51a 19. 28±0. 91a	15. 27±0. 95a 16. 59±1. 89a 17. 77±0. 89a 18. 94±0. 49a 19. 10±0. 28a 19. 49±1. 15a	14. 90±1. 72a 16. 89±2. 62a 17. 82±0. 85a 18. 55±0. 42a 19. 14±0. 46a 19. 54±0. 37a	14. 75±1. 03b 15. 90±1. 22b 17. 72±0. 44a 17. 91±1. 10a 19. 00±0. 77a 19. 54±0. 37a				
3 5 7 9 12 15	15. 46±1. 17a 16. 82±0. 37a 18. 56±0. 43a 18. 73±0. 30a 19. 23±0. 51a 19. 28±0. 91a 19. 64±0. 85a	15. 27±0. 95a 16. 59±1. 89a 17. 77±0. 89a 18. 94±0. 49a 19. 10±0. 28a 19. 49±1. 15a 19. 83±0. 70a	14. 90±1. 72a 16. 89±2. 62a 17. 82±0. 85a 18. 55±0. 42a 19. 14±0. 46a 19. 54±0. 37a 19. 56±0. 41a	14. $75\pm1.03b$ 14. $75\pm1.03b$ 15. $90\pm1.22b$ 17. $72\pm0.44a$ 17. $91\pm1.10a$ 19. $00\pm0.77a$ 19. $54\pm0.37a$ 19. $74\pm1.41a$				
3 5 7 9 12 15 18	$\begin{array}{c} 15.\ 46\pm 1.\ 17a\\ 16.\ 82\pm 0.\ 37a\\ 18.\ 56\pm 0.\ 43a\\ 18.\ 73\pm 0.\ 30a\\ 19.\ 23\pm 0.\ 51a\\ 19.\ 28\pm 0.\ 91a\\ 19.\ 64\pm 0.\ 85a\\ 19.\ 95\pm 0.\ 04a\\ \end{array}$	15. 27±0. 95a 16. 59±1. 89a 17. 77±0. 89a 18. 94±0. 49a 19. 10±0. 28a 19. 49±1. 15a 19. 83±0. 70a 19. 89±0. 34a	14. 90±1. 72a 16. 89±2. 62a 17. 82±0. 85a 18. 55±0. 42a 19. 14±0. 46a 19. 54±0. 37a 19. 56±0. 41a 19. 96±0. 67a	14. $75\pm1.03b$ 14. $75\pm1.03b$ 15. $90\pm1.22b$ 17. $72\pm0.44a$ 17. $91\pm1.10a$ 19. $00\pm0.77a$ 19. $54\pm0.37a$ 19. $74\pm1.41a$ 19. $89\pm0.40a$				
3 5 7 9 12 15 18 22	15. 46 ± 1 . 17a 16. 82 ± 0 . 37a 18. 56 ± 0 . 43a 18. 73 ±0 . 30a 19. 23 ±0 . 51a 19. 28 ±0 . 91a 19. 64 ±0 . 85a 19. 95 ±0 . 04a 20. 24 ±0 . 17a	 11. 22±0. 34a 15. 27±0. 95a 16. 59±1. 89a 17. 77±0. 89a 18. 94±0. 49a 19. 10±0. 28a 19. 49±1. 15a 19. 83±0. 70a 19. 89±0. 34a 20. 32±0. 61a 	14. 90 ± 1 . 72a 16. 89 ± 2 . 62a 17. 82 ± 0 . 85a 18. 55\pm0. 42a 19. 14\pm0. 46a 19. 54\pm0. 37a 19. 56\pm0. 41a 19. 96\pm0. 67a 19. 98\pm0. 37a	14. $75\pm1.03b$ 14. $75\pm1.03b$ 15. $90\pm1.22b$ 17. $72\pm0.44a$ 17. $91\pm1.10a$ 19. $00\pm0.77a$ 19. $54\pm0.37a$ 19. $74\pm1.41a$ 19. $89\pm0.40a$ 19. $95\pm0.86a$				
3 5 7 9 12 15 18 22 26	$\begin{array}{c} 15.\ 46\pm1.\ 17a\\ 16.\ 82\pm0.\ 37a\\ 18.\ 56\pm0.\ 43a\\ 18.\ 73\pm0.\ 30a\\ 19.\ 23\pm0.\ 51a\\ 19.\ 28\pm0.\ 91a\\ 19.\ 64\pm0.\ 85a\\ 19.\ 95\pm0.\ 04a\\ 20.\ 24\pm0.\ 17a\\ 20.\ 77\pm0.\ 92a\\ \end{array}$	$\begin{array}{c} 11.22\pm0.51a\\ 15.27\pm0.95a\\ 16.59\pm1.89a\\ 17.77\pm0.89a\\ 18.94\pm0.49a\\ 19.10\pm0.28a\\ 19.49\pm1.15a\\ 19.83\pm0.70a\\ 19.89\pm0.34a\\ 20.32\pm0.61a\\ 20.74\pm0.79a\\ \end{array}$	14. 90 ± 1 . $72a$ 16. 89 ± 2 . $62a$ 17. 82 ± 0 . $85a$ 18. 55 ± 0 . $42a$ 19. 14 ± 0 . $46a$ 19. 54 ± 0 . $37a$ 19. 56 ± 0 . $41a$ 19. 96 ± 0 . $67a$ 19. 98 ± 0 . $37a$ 20. 14 ± 0 . $80a$	14. 75 ± 1.0 , 10a 14. $75\pm1.03b$ 15. $90\pm1.22b$ 17. $72\pm0.44a$ 17. $91\pm1.10a$ 19. $00\pm0.77a$ 19. $54\pm0.37a$ 19. $74\pm1.41a$ 19. $89\pm0.40a$ 19. $95\pm0.86a$ 20. $17\pm0.66a$				
3 5 7 9 12 15 18 22 26 4' ¹⁾	15. 46 ± 1 . 17a 16. 82 ± 0 . 37a 18. 56 ± 0 . 43a 18. 73 ± 0 . 30a 19. 23 ± 0 . 51a 19. 28 ± 0 . 91a 19. 64 ± 0 . 85a 19. 95 ± 0 . 04a 20. 24 ± 0 . 17a 20. 77 ± 0 . 92a 20. 85 ± 0 . 31a	 11. 2220. 34a 15. 27±0. 95a 16. 59±1. 89a 17. 77±0. 89a 18. 94±0. 49a 19. 10±0. 28a 19. 49±1. 15a 19. 83±0. 70a 19. 89±0. 34a 20. 32±0. 61a 20. 74±0. 79a 20. 86±0. 49a 	14. 90 ± 1 . $72a$ 16. 89 ± 2 . $62a$ 17. 82 ± 0 . $85a$ 18. 55 ± 0 . $42a$ 19. 14 ± 0 . $46a$ 19. 56 ± 0 . $41a$ 19. 96 ± 0 . $67a$ 19. 98 ± 0 . $37a$ 20. 14 ± 0 . $80a$ 20. 32 ± 0 . $72a$	14. 75 ± 1.0 10a 14. $75\pm1.03b$ 15. $90\pm1.22b$ 17. $72\pm0.44a$ 17. $91\pm1.10a$ 19. $00\pm0.77a$ 19. $54\pm0.37a$ 19. $74\pm1.41a$ 19. $89\pm0.40a$ 19. $95\pm0.86a$ 20. $17\pm0.66a$ 20. $22\pm0.23a$				
3 5 7 9 12 15 18 22 26 4' ¹⁾ 8' ¹⁾	15. 46 ± 1 . $17a$ 16. 82 ± 0 . $37a$ 18. 56 ± 0 . $43a$ 18. 73 ± 0 . $30a$ 19. 23 ± 0 . $51a$ 19. 28 ± 0 . $91a$ 19. 64 ± 0 . $85a$ 19. 95 ± 0 . $04a$ 20. 24 ± 0 . $17a$ 20. 77 ± 0 . $92a$ 20. 85 ± 0 . $31a$ 20. 96 ± 0 . $45a$	$11.220.54a \\ 15.27\pm0.95a \\ 16.59\pm1.89a \\ 17.77\pm0.89a \\ 18.94\pm0.49a \\ 19.10\pm0.28a \\ 19.49\pm1.15a \\ 19.83\pm0.70a \\ 19.89\pm0.34a \\ 20.32\pm0.61a \\ 20.74\pm0.79a \\ 20.86\pm0.49a \\ 20.93\pm0.52a \\ 10.52a \\ 10.52a \\ 10.55a \\ $	14. 90 ± 1 . $72a$ 16. 89 ± 2 . $62a$ 17. 82 ± 0 . $85a$ 18. 55 ± 0 . $42a$ 19. 14 ± 0 . $46a$ 19. 54 ± 0 . $37a$ 19. 56 ± 0 . $41a$ 19. 96 ± 0 . $67a$ 19. 98 ± 0 . $37a$ 20. 14 ± 0 . $80a$ 20. 32 ± 0 . $72a$ 20. 43 ± 0 . $53a$	14. 75±1. 03b 14. 75±1. 03b 15. 90±1. 22b 17. 72±0. 44a 17. 91±1. 10a 19. 00±0. 77a 19. 54±0. 37a 19. 74±1. 41a 19. 89±0. 40a 19. 95±0. 86a 20. 17±0. 66a 20. 22±0. 23a 20. 56±0. 31a				

续表1 Table 1 (Continued)

	不同处理菊芋的节间长/mm ²⁾								
时间/d Time -	Internode length of H . tuberosus in different treatments ²⁾								
	СК	T1	T2	T3					
1	13. 50±0. 80a	13. 33±0. 59a	13. 73±0. 40a	13.70±1.00a					
2	13.98±0.95a	14. 45±0. 21a	14. 20±1. 00a	13.83±1.33a					
3	14. 55±1. 63a	14.63±1.57a	14.88±1.17a	14.67±1.55a					
5	15. 55±0. 21a	14. 97±0. 58ab	14.90±0.61ab	14.35 \pm 0.21b					
7	16. 20±0. 70a	15. 77±0. 81a	15. 70±0. 53a	15.70±1.19a					
9	18.03±0.43a	17. 70±0. 87a	17.30±0.67ab	$16.23 \pm 0.33 b$					
12	18.03±0.86a	17. 80±0. 70a	17.63±0.21ab	$16.63 \pm 0.21 \text{b}$					
15	19.00±0.75a	19. 27±0. 59a	19.05±0.49a	18.87±0.83a					
18	21. 37±0. 32a	20. 60±0. 42a	20. 77±0. 95a	18.65 \pm 0.78b					
22	20. 70±1. 37a	20. 50±0. 14a	20. 90±0. 42a	18.40 \pm 0.42b					
26	20. 43±0. 25a	20. 45±0. 21a	20. 35±0. 64a	$18.65{\pm}0.78\mathrm{b}$					
$4'^{(1)}$	20. 35±1. 91a	20. 77±0. 40a	20. 25±0. 21a	19.05±0.64a					
$8'^{(1)}$	20. 80±0. 72a	20. 90±1. 27a	20. 15±0. 07ab	18.90 \pm 0.42b					
$12'^{1)}$	20. 45±0. 21a	20. 65±0. 35a	20. 25±1. 06a	18.90 ± 0.56 b					

¹⁾4',8',12': 分别为复水4、8 和 12 d Rewatering for 4, 8, and 12 d, respectively.

3 个处理组的株高均低于 CK 组;复水后,T1 和 T2 组的株高逐渐升高且与 CK 组接近,T3 组的株高几乎不变。

由表1还可以看出:在干旱胁迫及复水期间,同 一时间3个处理组及CK组间菊芋的茎粗几乎无显 著差异。 由表 1 还可以看出:干旱胁迫 1~3 d,同一时间 3 个处理组及 CK 组间菊芋的节间长无显著差异,在 干旱胁迫 5~26 d 及复水期间,同一时间 T3 组菊芋的 节间长总体上显著小于 T1 和 T2 组及 CK 组。

2.2 干旱胁迫及复水对菊芋叶片光合特性的影响

干旱胁迫及复水对菊芋叶片叶绿素相对含量和 光合参数的影响见表 2。

2.2.1 叶绿素相对含量的变化 由表 2 可以看出: 不同干旱胁迫处理下,菊芋叶片中叶绿素相对含量随 着干旱胁迫时间延长总体上无明显变化,仅重度干旱 胁迫(T3)组在干旱胁迫 18 d 后有一定升高。干旱胁 迫 1~12 d,同一时间 3 个处理组及对照(CK)组间菊 芋叶片中叶绿素相对含量总体上无明显变化;干旱胁 迫 15~26 d 及复水后,同一时间 T3 组的叶绿素相对 含量总体上显著高于轻度干旱胁迫(T1)和中度干旱 胁迫(T2)组及 CK 组。

2.2.2 净光合速率的变化 由表 2 还可以看出:不同干旱胁迫处理下,菊芋叶片中净光合速率总体上随着干旱胁迫时间延长呈下降趋势,且复水后没有明显的回升现象。在干旱胁迫及复水期间,同一时间 CK 组菊芋叶片中净光合速率总体上显著高于 T3 组。

2.2.3 蒸腾速率的变化 由表 2 还可以看出:不同 干旱胁迫处理下,菊芋叶片中蒸腾速率随着干旱胁迫 时间延长总体上呈先降低后升高的趋势,且复水后蒸 腾速率先较干旱胁迫 26 d 明显降低,然后随着复水 时间延长逐渐升高。在干旱胁迫及复水期间,同一时

表 2 干旱胁迫及复水对菊芋叶片叶绿素相对含量和光合参数的影响($\overline{X}\pm SD$) Table 2 Effects of drought stress and rewatering on relative chlorophyll content and photosynthetic parameters of leaves of *Helianthus tuberosus* Linn. ($\overline{X}\pm SD$)

	. 不	司处理菊芋叶片中	可叶绿素相对含量	.2)	不同处理家	与 芋叶片中净光合	·速率/(µmol・m	$(2 \cdot s^{-1})^{2}$
时间/d	Relative c	hlorophyll content	in leaves of H . tu	berosus in	Net pho	otosynthetic rate of	leaves of <i>H</i> . tuber	osus in
Time .		different tre	eatments /			different tr	eatments /	
	СК	T1	T2	T3	СК	T1	T2	T3
1	19. 39±2. 97a	20. 18±1. 33a	20. 16±1. 79a	20.44±1.93a	7. 01±0. 14a	4.67±0.25b	4.74±0.31b	4. 20±0. 24c
2	20. 84±1. 58a	21. 22±1. 21a	20. 85±0. 95a	21. 78±0. 95a	9. 43±0. 99a	5.69±0.56b	5.79±0.18b	$5.65 \pm 0.18 \text{b}$
3	20. 80±0. 88a	19. 30±0. 81a	20. 10±2. 73a	19. 61±0. 79a	5. 30±0. 45a	4.25±0.49bc	4.75±0.14ab	3.92±0.28c
5	20. 53±0. 92ab	20.66±1.19ab	21.68±1.00a	19.70±0.17b	6. 99±0. 93a	6. 68±0. 49a	5. 61±0. 45a	$3.77 \pm 0.94 $ b
7	20. 64±0. 85a	20. 13±0. 73a	20. 68±0. 51a	20. 47±0. 67a	4. 46±0. 33ab	4. 95±0. 97a	4. 91±0. 51a	$3.62\pm0.18b$
9	21. 37±0. 91a	19.80±0.16b	20. 29±0. 83ab	20.48±0.94ab	5. 02±0. 65a	$3.64 \pm 0.37 b$	3.98±0.63ab	4. 25±0. 49ab
12	19.88±0.68a	20. 31±0. 78a	20. 08±0. 68a	20. 04±0. 78a	3. 58±0. 46a	3. 14±0. 30a	3.06±0.22a	2. 93±0. 29a
15	19.68±0.59b	19.25±0.39b	19.73±0.59b	20. 80±0. 47a	$3.09 \pm 0.27 b$	4.01±0.16a	4. 26±0. 43a	$3.\ 00{\pm}0.\ 04{\rm b}$
18	$20.39 \pm 1.06b$	19.54±0.79b	19.96±0.65b	25. 38±0. 87a	4. 26±0. 46a	$3.43 \pm 0.20 b$	$2.99{\pm}0.03{\rm bc}$	$2.90 \pm 0.00c$
22	20.49±0.90c	19.78±0.56c	21.90±0.71b	26. 17±0. 54a	$3.04 \pm 0.09 \text{b}$	3.38±0.17ab	3. 72±0. 40a	3.26±0.20ab
26	19.96±0.95b	18.87±0.54b	18.81±0.73b	25. 41±0. 85a	3. 22±0. 56a	2. 92±0. 29a	2. 61±0. 49a	2. 41±0. 23a
4′ ¹⁾	20. 12 \pm 0. 48bc	19.07±0.85c	20. 47 \pm 0. 32b	22. 26±0. 90a	4. 81±0. 33a	$4.01 \pm 0.20 b$	2.15±0.19c	1.87±0.13c
8′ ¹⁾	$20.57 \pm 0.97 b$	20.56 ± 0.96 b	$19.00 \pm 0.74 $ b	23. 76±0. 56a	2. 60±0. 51ab	2. 84±0. 25a	2.55±0.52ab	$1.90 \pm 0.35 b$
$12'^{1)}$	21.10±0.67b	21.63±0.84ab	22. 63±0. 74a	22. 34±0. 31ab	1.61±0.29b	2.07±0.12a	1.57±0.11b	1.27±0.16b

²⁾ CK: 对照 The control; T1: 轻度干旱胁迫 Mild drought stress; T2: 中度干旱胁迫 Moderate drought stress; T3: 重度干旱胁迫 Severe drought stress. 同行中不同小写字母表示不同处理间差异显著 (P<0.05) Different lowercases in the same row indicate the significant (P<0.05) difference among different treatments.</p>

续表2 Table 2 (Continued)

	,	,							
	不同处理	菊芋叶片中蒸腾速	率/(mmol·m ⁻² ·	s ⁻¹) ²⁾	不同处理菊芋叶片中气孔导度 $/(\mu mol \cdot m^{-2} \cdot s^{-1})^{2)}$				
时间/d	Transpiration rat	te of leaves of H. tr	<i>uberosus</i> in different	treatments ²⁾	Stomatal conducta	ance of leaves of H	. tuberosus in diffe	erent treatments ²⁾	
Time	СК	T1	T2	Т3	СК	T1	T2	Т3	
1	1.00±0.36c	4. 92±0. 90b	10. 82±0. 75a	1.92±1.29a	11.36±0.97c	52.18±5.31b	116. 55±2. 62a	112. 79±2. 83a	
2	$2.20 \pm 0.57 \mathrm{b}$	4. 45±0. 93a	4.15±0.89a	5. 21±1. 07a	27.36±2.26d	$48.09 \pm 4.48 \text{b}$	34.54±2.52c	57. 10±2. 83a	
3	0.91±0.59b	3. 59±1. 52a	4.44±1.01a	5.60±1.34a	16.22±1.53d	$36.48 \pm 0.66c$	$41.31 \pm 1.64 b$	59. 69±2. 04a	
5	0.33±0.22c	2.79±0.66b	5.22±1.03a	6. 13±0. 63a	$23.47 \pm 1.75c$	33.73 ± 1.25 b	47.97±2.67a	$37.33 \pm 1.77 b$	
7	$1.62 \pm 0.76 b$	4. 40±0. 92a	4.98±1.76a	4. 40±0. 91a	$21.20 \pm 1.37c$	43.30 ± 1.39 b	55. 81±0. 58a	48.87±1.66a	
9	2. 93±2. 15a	4. 21±1. 69a	3.60±1.63a	5.90±1.18a	37.22±1.44c	49.73±0.50b	38.26 \pm 0.44c	130. 50±1. 04a	
12	3.29±1.31a	3. 31±0. 85a	3.38±1.38a	3.80±0.66a	27.51±0.65d	46.30 \pm 1.21b	60.14±1.22a	$36.03 \pm 1.67 c$	
15	$3.07{\pm}1.02{\rm b}$	3.93±0.80ab	4.66±0.95ab	5.83±1.87a	21.73 ± 1.03 cd	30.78 \pm 0.06bc	78.62±1.17ab	127.32±1.63a	
18	1.13±0.38d	5.01±0.90c	7.36±1.17b	15. 92±1. 31a	22.98 $\pm 1.70d$	73.02±0.31c	82.68 ± 3.96 b	95.40±1.08a	
22	4. 10 ± 1.78 b	6.93±1.80b	6.84±0.82b	l6. 45±1. 80a	$80.03 \pm 0.28 \text{b}$	98.32 \pm 0.26b	$108.33 \pm 1.76b$	118.03±0.47a	
26	4.25 ± 1.63 b	6.33 \pm 1.69b	7.38±1.54b	l6. 16±1. 92a	36.75 \pm 0.39b	58.05 ± 1.61 b	$78.61{\pm}0.93{\rm b}$	91.95±2.64a	
4′ ¹⁾	$0.46 \pm 0.36 b$	2.25±1.24ab	2.38±1.11ab	3.44±1.54a	43.83±1.80a	42.09±0.75a	32.52±2.12b	32.67±2.36b	
8′ ¹⁾	2.13±1.91a	3.73±1.85a	5. 21±2. 83a	5.13±1.94a	43. 52±2. 54a	74.11±2.56a	62. 07±3. 32a	65. 54±3. 70a	
12′1)	6.23±1.89b	7.40±1.87b	24. 94±2. 16a 2	22. 97±8. 35a	45.20 ± 1.76 b	95.38±3.82b	104. 58±2. 02a	110. 84±0. 48a	
	不同处理	里菊芋叶片中胞间	CO,浓度/(µmol·	$mol^{-1})^{(2)}$	不同	司处理菊芋叶片中	水分利用效率变	$(k/\%^{2)}$	
时间刀	Intercellu	ılar CO ₂ concentrati	on of leaves of H. t	uberosus in	Wa	ter use efficiency of	f leaves of H . tube	rosus in	
Time		different 1	reatments ²⁾			different	treatments ²⁾		
	СК	T1	T2	Т3	СК	T1	T2	Т3	
1	446. 51±2. 67d	463.33±3.85c	486. 88±7. 32a	476. 79±3. 4	6b 2.62±0.17	'a 1.00±0.16b	0.53±0.10c	0.67±0.17c	
2	492.69±5.73c	581. 63±2. 79ab	582. 69±1. 84a	575.29±1.9	3b 1.64±0.20	a 0. 89±0. 21b	$0.93 \pm 0.14 \text{b}$	1.01 ± 0.15 b	
3	$643.07 \pm 3.35 b$	640.79±3.32bc	653.34±1.91a	636.90±1.5	7c 1.94±0.23	a 1.31±0.12b	$1.46 \pm 0.12b$	$1.41 \pm 0.14 $ b	
5	643.27±4.66d	673.54±1.76c	732. 33±0. 67a	726.18±0.8	8b 4.45±0.54	a 2.85±0.27b	$1.01 \pm 0.01c$	$0.\ 61{\pm}0.\ 04{\rm c}$	
7	931.85±0.96b	962.65±1.08a	914.09±1.81c	875.47±1.6	7d 1.17±0.17	a 0. 74±0. 05c	$0.97 \pm 0.07 b$	$0.99 \pm 0.14 \mathrm{b}$	
9	603. 32±0. 53a	456.13±1.39c	$472.99 \pm 0.82 b$	400.13±1.9	3d 1. 10±0. 29	a 1.07±0.01a	0.80±0.15b	$0.20 \pm 0.01 c$	
12	410. 17±0. 89c	$428.16 \pm 1.98 \mathrm{b}$	439. 12±0. 49a	297.36±1.3	9d 1. 32±0. 24	a 0.72±0.17b	$0.75 \pm 0.02 b$	$0.86 \pm 0.17 b$	
15	782. 93±0. 44a	771. 51±1. 91a	821. 28±51. 43a	876.32±1.5	7a 1. 19±0. 03	a 0. 90±0. 04b	0.90±0.18b	$0.79 \pm 0.08 \mathrm{b}$	
18	$464.45 \pm 20.08c$	511.58 ± 1.51 b	540. 23±23. 97b	594.61±1.8	2a 1. 19±0. 19	a 0.72±0.01b	0.48±0.02c	$0.27 \pm 0.06 d$	
22	$613.45 \pm 0.55c$	755.27 \pm 0.47b	757.03 ± 0.25 b	762.43±1.7	8a 0. 81±0. 08	a 0. 73±0. 19al	o 0. 70±0. 09ab	$0.\ 55{\pm}0.\ 08{\rm b}$	
26	680. 34±1. 75d	694.91±0.61c	719.96±3.73b	728.51±1.5	1a 0.55±0.08	a 0. 50±0. 04a	0.58±0.12a	0. 59±0. 07a	
4′ ¹⁾	558. 40±91. 46a	430.87±19.02b	398.97±2.33b	398.68±1.2	6b 1.88±0.18	a 1.68±0.17a	1. 93±0. 12a	1.58±0.30a	
8′ ¹⁾	1 011.62 \pm 0.69d	1 088.35 \pm 2.58c	1 121.77±1.39b	1 136. 28±2. 8	2a 0. 61±0. 07	a 0. 57±0. 09a	0. 61±0. 14a	0. 70±0. 07a	
12′1)	1 133.96 \pm 2.77b	1 117.38 \pm 1.77c	1 148.12±0.68a	1 147.39±0.5	3a 0.36±0.06	6a 0. 33±0. 10a	0. 31±0. 01a	0. 28±0. 01a	

¹⁾4',8',12': 分别为复水 4、8 和 12 d Rewatering for 4, 8, and 12 d, respectively.

²⁾ CK: 对照 The control; T1: 轻度干旱胁迫 Mild drought stress; T2: 中度干旱胁迫 Moderate drought stress; T3: 重度干旱胁迫 Severe drought stress. 同行中不同小写字母表示不同处理间差异显著(P<0.05) Different lowercases in the same row indicate the significant (P<0.05) difference among different treatments.</p>

间 T1、T2 和 T3 组菊芋叶片中蒸腾速率均高于 CK 组,且随着干旱胁迫程度的增加蒸腾速率明显升高, 其中,同一时间 T3 组的蒸腾速率总体上显著高于 CK 组。

2.2.4 气孔导度的变化 由表 2 还可以看出:不同 干旱胁迫处理下,菊芋叶片中气孔导度随着干旱胁迫 时间延长呈波动变化,但在干旱胁迫后期有不同程度 的升高,且复水后气孔导度先较干旱胁迫 26 d 明显 降低,然后随着复水时间延长逐渐升高。随着干旱胁 迫程度的增加,同一时间菊芋叶片中气孔导度总体上 逐渐升高,复水后 3 个处理组间气孔导度无显著差 异。干旱胁迫 1~18 d,同一时间 3 个处理组菊芋叶 片中气孔导度总体上显著高于 CK 组;干旱胁迫 22 和 26 d 及复水后,同一时间 T3 组的气孔导度总体上显著高于 T1 和 T2 组及 CK 组。

2.2.5 胞间 CO₂ 浓度的变化 由表 2 还可以看出: 不同干旱胁迫处理下, 菊芋叶片中胞间 CO₂ 浓度随 着干旱胁迫时间延长呈波动变化, 且复水后胞间 CO₂ 浓度先较干旱胁迫 26 d 显著降低, 然后随着复水时 间延长逐渐升高。干旱胁迫 1~12 d, 同一时间 T3 组 菊芋叶片中胞间 CO₂ 浓度总体上较低; 干旱胁迫 15~26 d, T3 组的胞间 CO₂ 浓度均显著高于 T1 和 T2 组及 CK 组; 复水后, 3 个处理组及 CK 组间胞间 CO₂ 浓度的差异随着复水时间延长而缩小。 2.2.6 水分利用效率的变化 由表 2 还可以看出: 不同干旱胁迫处理下,菊芋叶片中水分利用效率随着 干旱胁迫时间延长总体上呈降低趋势,且复水后水分 利用效率先较干旱胁迫 26 d 明显升高,然后随着复 水时间延长逐渐降低。干旱胁迫 1~22 d,同一时间 3 个处理组菊芋叶片中水分利用效率均较 CK 组显著 降低;干旱胁迫 26 d 及复水后,同一时间 3 个处理组 及 CK 组间的水分利用效率差异不显著。

2.3 干旱胁迫及复水对菊芋叶片生理指标的影响

干旱胁迫及复水对菊芋叶片生理指标的影响见 表 3。

2.3.1 总超氧化物歧化酶(T-SOD)活性的变化 由表3可以看出:不同干旱胁迫处理下, 菊芋叶片中 T-SOD活性随着干旱胁迫时间延长总体上呈明显升 高的趋势, 且复水后 T-SOD活性总体上继续升高但 趋于稳定。在干旱胁迫及复水期间, 同一时间3个处 理组菊芋叶片中 T-SOD活性总体上高于对照(CK) 组, 且重度干旱胁迫(T3)组总体上最高。

2.3.2 过氧化物酶(POD)活性的变化 由表 3 还可 以看出:总体上看,轻度干旱胁迫(T1)和 CK 组菊芋叶 片中 POD 活性随着干旱胁迫时间延长无明显变化,中 度干旱胁迫(T2)和 T3 组的 POD 活性先升高后降低; 复水后 T1和 T2 组及 CK 组的 POD 活性先降低后升 高,T3 组的 POD 活性则继续降低。干旱胁迫 1~18 d, 同一时间 T3 组菊芋叶片中 POD 活性总体上显著高于 T1 和 T2 组及 CK 组;在干旱胁迫 22~26 d 及复水后,同一时间 CK 组的 POD 活性总体上最高。

2.3.3 过氧化氢酶(CAT)活性的变化 由表 3 还可 以看出:不同干旱胁迫处理下,菊芋叶片中 CAT 活性 随着干旱胁迫时间延长总体上呈降低趋势,其中,在 干旱胁迫 26 d 显著降低;复水后,CAT 活性迅速升高 且趋于稳定。在干旱胁迫及复水期间,同一时间 CK 组菊芋叶片中 CAT 活性最高,T3 组的 CAT 活性总体 上最低,且干旱胁迫 9~26 d 及复水后总体上显著低 于 T1 和 T2 组及 CK 组。

2.3.4 丙二醛(MDA)含量的变化 由表 3 还可以 看出:不同干旱胁迫处理下,菊芋叶片中 MDA 含量随 着干旱胁迫时间延长总体上呈先升高后降低的变化 趋势,其中,在干旱胁迫 26 d 显著降低;且复水后 MDA 含量无明显变化。总体上看,在干旱胁迫 7~ 22 d,同一时间 T3 组菊芋叶片中 MDA 含量最高,T1 和 T2 组的 MDA 含量居中,CK 组的 MDA 含量最低; 在干旱胁迫 26 d 及复水后,同一时间 3 个处理组及 CK 组间 MDA 含量的差异相对较小。

2.3.5 脯氨酸(Pro)含量的变化 由表 3 还可以看出:不同干旱胁迫处理下,T1 和 CK 组菊芋叶片中 Pro含量随着胁迫时间延长总体上无明显变化,且复 水后也无明显变化;T2 和 T3 组的 Pro含量随着干旱 胁迫时间延长呈逐渐升高的趋势,但复水后显著降 低。在干旱胁迫1~5 d,同一时间 T1 和 CK 组菊芋叶

表 3 干旱胁迫及复水对菊芋叶片生理指标的影响($\overline{X} \pm SD$)

Table 3 Effects of drought stress and rewatering on physiological indexes of *Helianthus tuberosus* Linn. $(\bar{X}\pm SD)$

		-		-				
时间	不同处理菊芋叶片中总超氧化物歧化酶(T-SOD)活性/(U·g ⁻¹) ²⁾ Superoxide dismutase (T-SOD) activity of leaves of <i>H. tuberosus</i> in			不同处理菊 Peroxidas	不同处理菊芋叶片中过氧化物酶(POD)活性/(U・g ⁻¹) ²⁾ Peroxidase (POD) activity of leaves of <i>H. tuberosus</i> in			
Time		different t	reatments			different tr	reatments ^{-/}	
	СК	T1	T2	Т3	СК	T1	T2	Т3
1	51.70±2.88ab	50.85±3.47ab	52.04±1.96a	46.60±2.18b	6. 58±0. 23a	5.78±0.14b	6. 58±0. 50a	6. 76±0. 48a
2	$59.22 \pm 3.07 \mathrm{b}$	52.81±2.31c	$60.50 \pm 2.65 \text{b}$	63. 50±3. 82a	5.30 \pm 0.30b	6. 15±0. 29a	$5.85{\pm}0.57{\rm ab}$	5.76±0.39ab
3	65.17 \pm 2.67b	64. 15 \pm 4. 70b	68.31 \pm 1.13b	83. 69±2. 42a	6.31±0.46ab	$5.78{\pm}0.17{\rm b}$	6. 64±0. 19a	6. 92±0. 59a
5	54.62±4.28d	83.98±5.21c	97.68 \pm 4.57b	125. 37±2. 44a	6.68 \pm 0.36b	$5.\ 53{\pm}0.\ 58{\rm c}$	7. 50 ± 0.28 b	8. 95±0. 87a
7	69.27 \pm 1.24b	71. 20 \pm 2. 22b	124. 42±0. 19a	122. 43±10. 00a	7. 61 ± 0.53 b	6.88 \pm 0.62b	7.46 \pm 0.59b	8. 80±0. 20a
9	76.55 \pm 7.25b	74.01 \pm 6.69b	126. 20±2. 31a	114. 50±11. 78a	$6.\ 69{\pm}0.\ 62{\rm c}$	5.58 \pm 0.40d	$8.\ 62{\pm}0.\ 38{\rm b}$	10. 43±0. 64a
12	62. $01\pm 2.00d$	71. 20±0. 71c	125.69 \pm 3.44b	147. 32±2. 13a	7. 15 \pm 0. 29c	7.76 \pm 0.29c	$8.42{\pm}0.50{\rm b}$	11. 62±0. 27a
15	51.77 \pm 2.12d	70. $36 \pm 4.05c$	103.95 \pm 5.38b	144. 39±9. 97a	7. 15 \pm 0. 38c	7.05 \pm 0.18c	10.23 \pm 0.62b	13. 78±0. 56a
18	96.44 \pm 6.42b	104.27 \pm 4.62b	142. 14±0. 98a	147.73±3.95a	6.88 \pm 0.16d	7.76±0.16c	$9.26{\pm}0.38{\rm b}$	11. 75±0. 20a
22	116.71 \pm 3.81c	145.90 \pm 3.09b	147.63 \pm 8.41b	172. 43±8. 89a	7. 14±0. 49ab	$6.\ 31{\pm}0.\ 49{\rm b}$	7. 44±0. 39a	6.83 \pm 0.30ab
26	134. 61±6. 79a	130. 60±7. 20a	146. 17±12. 98a	142. 84±2. 48a	7. 57±0. 27a	7.84±0.39a	$6.96{\pm}0.20{\rm b}$	6.38±0.11c
$4'^{(1)}$	141.74 $\pm 10.81c$	173. 11±1. 41a	$158.48 \pm 0.57 \mathrm{b}$	166.83 \pm 6.28ab	6.39±0.36ab	7.08±0.52a	$4.79{\pm}0.39{\rm c}$	5.79 \pm 0.49d
$8'^{(1)}$	$163.24 \pm 3.60 \mathrm{b}$	$145.92 \pm 8.73 c$	131. 29±2. 45d	186.06±3.22a	7. 39±0. 28a	6.16±0.19bc	6.58 \pm 0.20b	5.71±0.38c
12′ ¹⁾	169.72 \pm 1.22bc	$160.95 \pm 1.87c$	175.15±11.32ab	o 186. 94±8. 54a	7.45±0.36a	7. 32±0. 65a	6.77±0.55a	$5.18 \pm 0.14 \text{b}$

2

3

5

7

9

12

15

18

22

26

 $4'^{(1)}$

8'1)

 $12^{\prime 1)}$

23.45±0.97b

61. 07±2. 98a

 21.04 ± 1.46 b

25.53±0.86c

66.44±2.72b

32.15±0.59b

54.02±4.02b

31.87±0.79c

38.98±0.69c

41.04±1.66d

102. 41±2. 10a

50.81±2.59c

75. 24 \pm 2. 36a

续表3 Table 3 (Continued)

时间/d Time	不同处理菊 Catalase	芋叶片中过氧化氢 (CAT) activity o different tr	〔酶(CAT)活性/(f leaves of <i>H. tube</i> eatments ²⁾	$\mathbf{U} \cdot \mathbf{mg}^{-1})^{(2)}$	不同处理菊芋叶片中丙二醛(MDA)含量/(nmol・g ⁻¹) ²⁾ Malondialdehyde (MDA) content in leaves of <i>H. tuberosus</i> in different treatments ²⁾			
Time _	СК	T1	T2	Т3	СК	T1	T2	Т3
1	50. 21±0. 63a	47.35±0.31b	44.01±0.57c	43.86±0.36c	38.93±1.28b	40. 71±2. 56ab	43.28±1.41a	37. 36±2. 93b
2	45. 57±0. 72a	40. $80\pm0.13c$	$41.04{\pm}0.29{\rm c}$	42. 14 \pm 0. 31b	39.28±2.20c	$47.46 \pm 3.84 \mathrm{b}$	46.36±2.35b	57.00±2.97a
3	39. 27±0. 08a	34.59 \pm 0.13b	$31.19{\pm}0.82{\rm c}$	33.86 ± 0.36 b	44.45±3.79b	$33.29 \pm 2.42c$	63. 58±3. 34a	62. 52±4. 49a
5	45.46±0.58a	36.34±0.38c	40.90 ± 0.19 b	$41.28{\pm}0.21{\rm b}$	52. 44 ± 3.30 b	71. 93±3. 71a	76. 99±4. 15a	55.15±9.99b
7	44.38±0.18a	40.92 \pm 0.35bc	40.46±0.39c	41.49 \pm 0.74b	64. 91±4. 54a	66. 21±32. 72a	62. 76±6. 57a	92. 70±6. 99a
9	35. 59±0. 15a	28.46 \pm 0.27d	32.59 \pm 0.37b	$30.\ 62{\pm}0.\ 42{\rm c}$	76.23±6.80c	90.11 \pm 8.28bc	98.47±10.26b	148.87±7.03a
12	34. 01±0. 16a	$33.04 \pm 0.19 \text{b}$	30.11±0.42c	25.48 \pm 0.78d	106.54 \pm 3.04c	$135.02 \pm 8.56 b$	110.47±13.79c	173.63±13.02a
15	34. 98±0. 92a	$33.68\pm0.36b$	26.26±0.11c	27.11±0.14c	$101.05 \pm 6.92 d$	161.85 \pm 10.67c	$258.29 \pm 8.82 \mathrm{b}$	309.48±11.17a
18	34. 80±0. 30a	24. 14±0. 29c	25.72±0.51b	22. $53 \pm 0.16d$	188.48 ± 10.90 b	342. 78±13. 12a	355. 38±2. 93a	359.91±23.60a
22	35. 73±0. 40a	$31.38\pm0.32b$	$24.\ 00{\pm}0.\ 39{\rm c}$	18.85 \pm 0.40d	190. 30 ± 4.03 d	342. 12 \pm 15. 60c	377.04±4.65b	636.85±21.14a
26	37.11±0.19a	$23.88{\pm}0.23{\rm b}$	12.16±0.19c	$3.65 \pm 0.77 d$	90. 99±7. 07a	84. 03±2. 63a	74.77±2.45b	84. 21±2. 09a
4′ ¹⁾	35. 30±0. 59a	33.53±0.52b	32.24±0.30c	$32.61{\pm}0.51{\rm bc}$	89. 71±4. 66a	91. 34±4. 73a	82.30±5.57ab	74.38±4.87b
8′1)	38. 73±0. 25a	36.77 \pm 0.60b	38. 97±0. 21a	37.18 \pm 0.22b	99. 73±5. 47a	103. 43±4. 43a	85.75±2.23b	97.96±5.33a
12′1)	32. 85±0. 85a	32. 16±0. 10a	31. 17 \pm 0. 31b	30.02±0.31c	86.58 \pm 6.57b	94. 99±3. 70a	96. 21±3. 41a	86.11±2.23b
	不同处理	菊芋叶片中脯氨酮	捕氨酶(Pro)含量/($\mu g \cdot g^{-1}$) ²⁾ 不同处理菊芋叶片中可溶性蛋白质含量/(m			$(g \cdot g^{-1})^{2}$		
时间/d	Proline (Pro) content in leaves of H. tuberosus in				Soluble	e protein content ir	a leaves of H. tube	rosus in
Time		different tr	eatments ²⁾			different ti	reatments ²⁾	
	СК	T1	T2	Т3	СК	T1	T2	Т3
1	44.11±1.76a	38.02±1.76b	37. 03±0. 79bc	34. 79±0. 64c	4, 76±0, 21a	4. 57±0. 15a	4, 30±0, 38a	4, 41±0, 14a

23.37±0.28b

19.12±1.48c

16.85±0.30cd

65.85±11.49a

75.93±1.39a

266. 57±11. 49a

502.38±18.38a

629.34±13.98a

981.75±12.02a

102.36±3.38a

56.52±1.94b

66.74 \pm 0.73d

638.94±3.03b 1 049.34±6.68a

6.23±0.16a

5.94±0.31a

5.67±0.03a

8.80±0.30a

5.36±0.43a

 $6.63\pm0.25a$

6.87±0.17a

6. 50±0. 20a

6.31±0.39a

5.62±0.67a

2.21±0.19b

2.75 \pm 0.24a

 $3.06 \pm 0.19 \text{b}$

6. 52±0. 28a

 $5.35 \pm 0.29 \text{b}$

5.90±0.17a

8.33±0.59a

5.36±0.34a

4.94±0.15b

5.46±0.27b

6. 50±0. 32a

6. 31±0. 22a

5.62±0.17a

2.21±0.09b

2.75±0.16a

3.06±0.19b

6.56±0.18a

 $4.69 \pm 0.21c$

5.77±0.29a

6.79±0.35b

4.87 \pm 0.28a

4.87±0.17b

3.46±0.09c

 5.23 ± 0.11 b

 $5.00 \pm 0.37 b$

 $4.44 \pm 0.29 b$

 $3.45\pm0.13a$

2.55 \pm 0.23a

3.88±0.37a

 $5.08 \pm 0.45 b$

 $4.78 \pm 0.22c$

4.77 \pm 0.16b

5.67±0.23c

4.97±0.06a

4.94±0.39b

2.71±0.22d

3.19±0.37c

2.38±0.30c

2.22±0.17c

3.19±0.13a

2.43 \pm 0.27a

 3.48 ± 0.12 ab

¹⁾4',8',12':分别为复水4、8 和 12 d Rewatering for 4, 8, and 12 d, respectively.

29.58±0.31c 148.74±5.74b

27.46±0.42d 343.64±1.04b

²⁾ CK: 对照 The control; T1: 轻度干旱胁迫 Mild drought stress; T2: 中度干旱胁迫 Moderate drought stress; T3: 重度干旱胁迫 Severe drought stress. 同行中不同小写字母表示不同处理间差异显著(P<0.05) Different lowercases in the same row indicate the significant (P<0.05) difference among different treatments.</p>

片中 Pro 含量总体上显著高于 T2 和 T3 组;在干旱胁 迫 7~26 d,同一时间 T2 和 T3 组的 Pro 含量总体上 显著高于 T1 和 CK 组。

25.65±0.64a

27.79±0.73b

24. 14±0. 30a

24. 10±0. 65c

 $68.83 \pm 1.79 \mathrm{b}$

40.89±0.62b

50.93±2.02b

55.41±0.69c

 $48.84 \pm 1.08 \text{b}$

 $65.60 \pm 0.99a$

 136.07 ± 1.54 b

 $22.09 \pm 1.90b$

14. 17±0. 39d

18. 59±0. 29c

30.58±1.84b

48.57±1.44c

33.44±0.26b

43.64±1.55b

52.11±1.49b

47.13±0.93d

89.71 \pm 2.89c

2.3.6 可溶性蛋白质含量的变化 由表 3 还可以看 出:不同干旱胁迫处理下,3 个处理组菊芋叶片中可 溶性蛋白质含量随着干旱胁迫时间延长总体上无明 显变化,仅在干旱胁迫中期略有升高;且在复水后趋 于稳定。总体上看,在干旱胁迫 1~26 d,同一时间 CK 组菊芋叶片中可溶性蛋白质含量较高,T1 和 T2 组的可溶性蛋白质含量居中,T3 组的可溶性蛋白质 含量较低;复水后同一时间3个处理组及CK组间可 溶性蛋白质含量的差异相对较小。

3 讨 论

本研究中,轻度干旱胁迫对菊芋的株高和节间长 总体上无显著影响,但重度干旱胁迫下,随着干旱胁 迫时间的延长菊芋受到了不可逆的影响,且复水后没 有明显变化,说明菊芋具有一定的抗旱性。

干旱胁迫下,植物的生理生化指标会受到不同程

度的影响,其中,脯氨酶(Pro)含量、丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性和过氧化物酶(POD)活性等指标可作为抗旱性鉴定的重要指标^[17-20]。本研究中,不同干旱胁迫处理下,菊芋品种'青芋2号'叶片中叶绿素含量仅在重度干旱胁迫18 d有一定升高,在轻度和中度干旱胁迫下无明显变化,且复水后,叶绿素含量趋于稳定,说明菊芋可以通过调控叶绿素合成应对干旱胁迫。

气孔导度是衡量植物与环境间水分和 CO, 的平 衡及循环的重要指标^[21],改善叶片中气孔导度可促 进植物对水分和 CO, 的吸收, 从而改善植物的光合 作用,有利于植物的生长^[22-23]。已有研究结果表明: 随着干旱胁迫的加剧, 芸豆 (Phaselous vulgaris Linn.)^[24]、玉米(Zea mays Linn.)^[25]、油菜(Brassica napus Linn.)^[26-27]、沙芥[Pugionium cornutum (Linn.) Gaertn.)^[28]、大豆^[8]、葡萄(*Vitis riparia* × V. labrusca)^[29]、云锦杜鹃(Rhododendron fortunei Lindl.)^[30]和石灰花楸[Sorbus folgneri (Schneid.) Rehd.]^[31]等植物叶片中气孔导度均呈逐渐下降的趋 势。本研究采用出苗 80 d 后的菊芋植株为研究材 料,此时块茎已经形成,具有一定的抗旱性。总体上 看,随着干旱胁迫程度的增加,菊芋叶片中气孔导度 有不同程度的升高,进而导致蒸腾速率的升高:复水 后气孔导度先降低后升高,推测可能由于菊芋较抗 旱,在干旱胁迫下,气孔处在关闭或半关闭状态。菊 芋叶片胞间 CO,浓度随着干旱胁迫时间延长呈波动 变化,且复水后胞间 CO,浓度先较干旱胁迫 26 d 显 著降低,然后随着复水时间延长逐渐升高,说明光合 作用的下降不是由气孔关闭引起的,主要由非气孔限 制导致,即叶肉细胞光合活性降低的缘故^[32]。干旱 胁迫处理下,菊芋叶片中水分利用效率较对照明显降 低,且在干旱胁迫后期,随着干旱胁迫程度的增加,水 分利用效率总体上呈降低趋势,可能由于在干旱胁迫 后期菊芋植株出现了部分不可逆的生理变化。

研究结果显示:随着干旱胁迫程度的增加, 菊芋 叶片中 MDA 含量呈升高趋势, 且随着干旱胁迫时间 延长总体上先升高后降低, 干旱胁迫 26 d 及复水后, MDA 含量趋于稳定, 说明干旱胁迫加剧了菊芋叶片 中膜脂过氧化和细胞膜系统的破坏程度。在干旱胁 迫中期和后期, 中度和重度干旱胁迫下菊芋叶片中 Pro 含量较高, 说明 Pro 含量增加有利于菊芋抵御干 旱胁迫, 这与马彦军等^[33] 对胡枝子(*Lespedeza bicolor* Turcz.)的研究结果一致。不同干旱胁迫处理下,随 着干旱胁迫时间延长,菊芋叶片中总超氧化物歧化酶 (T-SOD)活性总体上明显升高,且复水后 T-SOD 活 性总体上继续升高,但趋于稳定,POD 活性在中度和 重度干旱胁迫下总体上先升高后降低,表明菊芊在干 旱胁迫初期均通过升高体内保护酶活性来清除自由 基,降低膜脂过氧化作用,维持膜结构的稳定性,从而 抵御逆境,降低伤害^[34];但随着干旱胁迫时间逐渐延 长,膜系统受损,胞内代谢紊乱,T-SOD 和 POD 活性 降低,表明植物抗氧化保护系统的抵抗修复能力存在 阈值[35]。随着干旱胁迫时间延长,菊芋叶片中可溶 性蛋白质含量在干旱胁迫中期略有升高,但在复水后 趋于稳定,说明可溶性蛋白质参与调控植物抗旱。逆 境胁迫条件下,植物通过诱导新的可溶性蛋白质合成 参与细胞的渗透调节,以增强保护酶和渗透调节物质 合成酶的活性,促进可溶性蛋白质含量升高^[36]。此 外,植物还通过积累可溶性蛋白质提高细胞的保水能 力,以保护植物生长所需的生命物质^[37]。

菊芋的抗旱性是一个复杂的生理过程,与其品种 和生存环境都有密切的关系,本文仅选择1个菊芋品 种作为实验材料,对其生长及叶片光合和生理特性进 行研究,研究结果缺乏代表性。如何更好地评价菊芋 的抗旱性及其抗旱机制,还有待对菊芋其他品种及其 他方面进行更深入的研究。

参考文献:

- [1] 赵孟良,刘明池,钟启文,等.不同来源菊芋种质资源品质性 状多样性分析[J].西北农林科技大学学报(自然科学版), 2018,46(2):104-112.
- [2] 赵孟良,刘明池,钟启文,等. 29 份菊芋种质资源氨基酸含量 和营养价值评价[J].种子,2018,37(3):55-60.
- [3] 刘祖昕, 谢光辉. 菊芋作为能源植物的研究进展[J]. 中国农业 大学学报, 2012, 17(6): 122-132.
- [4] 王丽慧,李 屹,赵孟良,等. 刈割次数对菊芋生物量及营养 价值影响研究[J]. 饲料工业, 2015, 36(3): 12-15.
- [5] 赵 莉, 牟书勇, 张鲜花. 干旱胁迫下新疆野生鸭茅(Dactylis glomerata)苗期抗旱性生理特性[J]. 干旱区研究, 2015, 32 (5): 953-957.
- [6] 林 巧, 王鹏新, 张树誉, 等. 不同时间尺度条件植被温度指数干旱监测方法的适用性分析[J]. 干旱区研究, 2016, 33 (1): 186-192.
- [7] 季 杨,张新全,彭 燕,等.干旱胁迫对鸭茅幼苗根系生长及光合特性的影响[J].应用生态学报,2013,24(10): 2763-2769.
- [8] 王兴荣,张彦军,李 玥,等.干旱胁迫对大豆生长的影响及

抗旱性评价方法与指标筛选[J]. 植物遗传资源学报, 2018, 19 (1): 49-56.

- [9] 徐丽霞,仪慧兰,郭二虎,等.干旱胁迫对谷子抽穗期生理生化和产量的影响[J].山西大学学报(自然科学版),2016,39(4):672-678.
- [10] 包秀霞,包秀平,廉 勇.干旱胁迫对内蒙古草原多根葱生理 生化指标的影响[J].华北农学报,2017,32(1):233-238.
- [11] 赵孟良,王丽慧,孙雪梅,等.干旱胁迫下菊芋可溶性碳水化
 合物的积累及分配规律[J].江苏农业科学,2015,43(2): 340-343.
- [12] 黄高峰.干旱胁迫下菊芋生理生化响应与主栽品种抗旱性比较[D].西宁:青海大学农牧学院,2011:25-30.
- [13] 李 屹, 王丽慧, 赵孟良, 等. 干旱胁迫下菊芋叶片光合变化 规律研究[J]. 湖北农业科学, 2015, 54(4): 886-892.
- [14] 黄高峰,王丽慧,方云花,等.干旱胁迫对菊芋苗期叶片保护 酶活性及膜脂过氧化作用的影响[J].西南农业学报,2011, 24(2):552-555.
- [15] 李志虹,高 凯,王 琳,等.干旱-复水对菊芋苗期根、茎、 叶生长及叶绿素含量的影响[J].中国农业信息,2016(21): 117-121,123.
- [16] 朱铁霞,王 琳,高 阳,等. 干旱-复水对菊芋苗期根、茎、 叶形态特征的影响[J]. 草业科学, 2017, 34 (11): 2309-2315.
- [17] 莫言玲,郑俊鶱,杨瑞平,等.不同西瓜基因型对干旱胁迫的 生理响应及其抗旱性评价[J].应用生态学报,2016,27(6): 1942-1952.
- [18] 何彩云, 李梦颖, 罗红梅, 等. 不同沙棘品种抗旱性的比较 [J]. 林业科学研究, 2015, 28(5): 634-639.
- [19] 郝曦煜,王红丹,尹智超,等. PEG 胁迫对小豆苗期抗旱生理 指标的影响及抗旱鉴定体系建立[J]. 作物杂志,2017(4): 134-142.
- [20] 芮海云,张兴兴,沈振国,等. 箭筈豌豆镉胁迫下的失水胁迫 和渗透调节物质的积累[J]. 作物杂志,2017(3):69-74.
- [21] 李 思,张 莉,姚雅琴.干旱对冬小麦叶片气孔、活性氧和 光合作用的影响[J].河北大学学报(自然科学版),2015,35
 (3):487-493.
- [22] 高冠龙,张小由,常宗强,等. 植物气孔导度的环境响应模拟 及其尺度扩展[J]. 生态学报, 2016, 36(6): 1491-1500.
- [23] FRANKS P J, DRAKE P L, BEERLING D J. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using *Eucalyptus* globulus[J]. Plant, Cell and Environment, 2009, 32 (12): 1737-1748.

- [24] MIYASHITA K, TANAKAMARU S, MAITANI T, et al. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress [J]. Environmental and Experimental Botany, 2005, 53: 205-214.
- [25] 于文颖,纪瑞鹏,冯 锐,等.不同生育期玉米叶片光合特性 及水分利用效率对水分胁迫的响应[J]. 生态学报,2015,35 (9):2902-2909.
- [26] 蒙祖庆,宋丰萍,刘振兴,等. 干旱及复水对油菜苗期光合及
 叶绿素荧光特性的影响[J]. 中国油料作物学报, 2012, 34
 (1):40-47.
- [27] 白 鹏, 冉春艳, 谢小玉. 干旱胁迫对油菜蕾薹期生理特性及 农艺性状的影响 [J]. 中国农业科学, 2014, 47 (18): 3566-3576.
- [28] 庞 杰,张凤兰,郝丽珍,等.沙芥幼苗叶片解剖结构和光合 作用对干旱胁迫的响应[J]. 生态环境学报,2013,22(4): 575-581.
- [29] 纪文龙,范意娟,李 辰,等. 干旱胁迫下葡萄叶片气孔导度
 和水势动态的变化规律[J]. 中国农业大学学报, 2014, 19
 (4):74-80.
- [30] 柯世省,魏 燕,陈贤田,等. 云锦杜鹃气孔导度和蒸腾速率 对水分的响应[J]. 安徽农业科学, 2007, 35(21): 6363-6365, 6369.
- [31] 陈 昕,徐宜凤,张振英. 干旱胁迫下石灰花楸幼苗叶片的解 剖结构和光合生理响应[J]. 西北植物学报,2012,32(1): 111-116.
- [32] 姚庆群,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制 [J].热带农业科学,2005,25(4):80-85.
- [33] 马彦军,马 瑞,曹致中,等. PEG 胁迫对胡枝子幼苗叶片生 理特性的影响[J]. 中国沙漠, 2012, 32(6): 1662-1668.
- [34] 梁新华,史大刚. 干旱胁迫对光果甘草幼苗根系 MDA 含量及 保护酶 POD、CAT 活性的影响[J]. 干旱地区农业研究, 2006, 24(3): 108-110.
- [35] 徐 萍,李 进,吕海英,等. 干旱胁迫对银沙槐幼苗叶绿体和线粒体超微结构及膜脂过氧化的影响[J]. 干旱区研究,2016,33(1):120-130.
- [36] 李 伟.不同种源连香树对干旱胁迫的生理响应研究[D].雅 安:四川农业大学林学园艺学院,2009:40-44.
- [37] 任 才.干旱胁迫对三种百里香种子萌发及植株生理特性的 影响[D].太原:山西农业大学林学院,2017:11-25. (责任编辑:张明霞)