不同热解温度和升温速率下杨树枝条 生物质炭产率和理化性质分析

孙 玲¹, 贾明云², 刘壮壮², 薛建辉^{1,2,①}, 于金平^{2,①}
[1. 南京林业大学生物与环境学院, 江苏南京 210037;
2. 江苏省中国科学院植物研究所(南京中山植物园) 江苏省植物资源研究与利用重点实验室, 江苏南京 210014]

摘要: 以杨树(Populus sp.)枝条为原材料,研究不同热解温度和升温速率下制备的生物质炭产率和理化性质的变 化。结果表明:热解温度对杨树枝条生物质炭的产率,灰分含量,pH值,电导率,C、N、H、K、Ca、Na和 Mg含量以及 C/H比均有极显著(P<0.01)影响,升温速率对K、Ca和Mg含量以及C/H比有显著(P<0.05)或极显著影响,二者 的交互作用对灰分含量,pH值,电导率以及H、K、Ca、Na和Mg含量有显著或极显著影响。同一升温速率下,生物 质炭产率随着热解温度的升高而降低,热解温度700℃条件下的生物质炭产率较热解温度300℃降低了68.93%~ 70.76%;生物质炭的灰分含量、pH值和电导率总体随着热解温度的升高而升高。同一升温速率下,随着热解温度 的升高,生物质炭 C 含量升高,N 含量先升高后降低,H 含量降低。与热解温度 300 ℃相比较,热解温度 700 ℃条件 下的生物质炭 C 含量的增幅在 50%以上,H 含量的降幅在 80%以上,差异达显著水平。同一升温速率下,生物质炭 的 K、Ca、Na 和 Mg 含量总体随着热解温度的升高而升高,且热解温度 700 ℃条件下这 4 个元素含量较热解温度 300℃显著升高。同一升温速率下,随着热解温度的升高,生物质炭表面层状结构逐渐明显,比表面积和总孔容总 体呈增大的趋势,平均孔径、微孔面积和微孔体积的变化趋势存在差异。总体上看,生物质炭的表面官能团种类在 不同热解温度和升温速率下基本相同;随着热解温度的升高,-CH,和-CH,等官能团数量减少,C=C数量增加,生 物质炭稳定性增加;随着升温速率的增加,-OH 数量增加,C/H 比下降,生物质炭稳定性下降。综上所述,热解温度 400 ℃、升温速率 10 ℃ · min⁻¹条件下制备的杨树枝条生物质炭呈弱碱性, C 和 N 含量损失较少, 较适合改良碱性 土壤;热解温度 500 ℃~700 ℃条件下制备的生物质炭 pH 值、灰分含量以及 K 和 Na 含量较高,更适合改良酸性土 壤;热解温度 600 ℃和 700 ℃条件下制备的生物质炭比表面积较高,适合改良重金属和有机物污染的土壤。

关键词: 杨树; 枝条; 生物质炭; 热解温度; 升温速率; 产率; 理化性质

中图分类号: S792.11.08; TK61 文献标志码: A 文章编号: 1674-7895(2023)03-0071-12 DOI: 10.3969/j.issn.1674-7895.2023.03.08

Analyses on yield and physicochemical properties of poplar branch biochars at different pyrolysis temperatures and heating rates SUN Ling¹, JIA Mingyun², LIU Zhuangzhuang², XUE Jianhui^{1,2,①}, YU Jinping^{2,①} [1. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; 2. Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China], J. Plant Resour. & Environ., 2023, **32**(3): 71–82, 91

Abstract: Taking branches of poplar (*Populus* sp.) as raw materials, changes of yield and physicochemical properties of biochars prepared at different pyrolysis temperatures and heating rates were

收稿日期: 2023-01-09

基金项目: 江苏省碳达峰碳中和科技创新专项资金(BE2022306)

作者简介:孙 玲(1997—),女,安徽六安人,硕士研究生,主要从事环境生态学方面的研究。

^①通信作者 E-mail: jhxue@ cnbg.net; yujinping@ cnbg.net

引用格式:孙 玲, 贾明云, 刘壮壮, 等. 不同热解温度和升温速率下杨树枝条生物质炭产率和理化性质分析[J]. 植物资源与环境学报, 2023, 32(3): 71-82, 91.

studied. The results show that pyrolysis temperatures have extremely significant (P < 0.01) effects on vield, ash content, pH value, electric conductivity, contents of C, N, H, K, Ca, Na and Mg, and C/H ratio of poplar branch biochars, heating rates have significant (P < 0.05) or extremely significant effects on contents of K, Ca and Mg and C/H ratio, and the interactions of pyrolysis temperatures and heating rates have significant or extremely significant effects on ash content, pH value, electric conductivity, and contents of H, K, Ca, Na and Mg. When at the same heating rate, biochar yield decreases with the increase of pyrolysis temperature, biochar yield at the pyrolysis temperature of 700 $^{\circ}$ C decreases by 68.93%-70.76% compared with that at the pyrolysis temperature of 300 °C; ash content, pH value, and electric conductivity of biochar increase with the increase of pyrolysis temperature in general. When at the same heating rate, C content in biochar increases, N content first increases and then decreases, and H content decreases with the increase of pyrolysis temperature. Compared with the pyrolysis temperature of 300 °C, the increment of C content and decrement of H content of biochar at the pyrolysis temperature of 700 ℃ are greater than 50% and 80% respectively, and the differences reach significant levels. When at the same heating rate, contents of K, Ca, Na and Mg of biochar increase with the increase of pyrolysis temperature in general, and contents of these four elements at the pyrolysis temperature of 700 °C all significantly increase compared with those at the pyrolysis temperature of 300 °C. When at the same heating rate, with the increase of pyrolysis temperature, the surface lamellar structure of biochar gradually becomes evident, specific surface area and total pore volume show a tendency to increase, and the variation tendencies of average pore width, micropore area, and micropore volume have differences. In general, the types of surface functional groups of biochar are basically the same at different pyrolysis temperatures and heating rates; with the increase of pyrolysis temperature, the number of functional groups such as $-CH_3$ and $-CH_2$ decreases, the number of C=C increases, and the stability of biochar increases; with the increase of heating rate, the number of -OH increases, and the C/H ratio decreases. Overall, the poplar branch biochar prepared at the pyrolysis temperature of 400 $^\circ$ C and heating rate of 10 $^{\circ}$ C \cdot min⁻¹ is weakly alkaline, and its losses in contents of C and N are relatively less, which is suitable for remediating alkaline soil; pH values, ash contents, and contents of K and Na in biochars prepared at pyrolysis temperature of 500 $^{\circ}$ C - 700 $^{\circ}$ C are relatively high, which are more suitable for remediating acid soil; specific surface areas of biochars prepared at pyrolysis temperature of 600 $^{\circ}$ C and 700 $^{\circ}$ C are relatively high, which are suitable for remediating heavy metal and organic matter contaminated soil.

Key words: poplar (*Populus* sp.); branch; biochar; pyrolysis temperature; heating rate; yield; physicochemical property

随着能源危机逐渐加剧,对可再生能源的开发非 常迫切。目前,生物质材料已被公认为是一种潜力 大、经济可行性强、具有多种社会和环境效益的可再 生资源^[1]。生物质炭(biochar)作为一种重要的生物 质材料,是指生物质原材料在无氧或缺氧条件下经高 温热解氧化后形成的一种含碳量高、高度芳香化、性 质稳定的多孔物质,是当前能源、环境和农业等领域 研究的热点。生物质炭富含营养物质,可以增加土壤 养分,促进作物生长,提高作物产量^[2-4]。Cheng 等^[5] 研究发现,在热解温度 400 °C ~ 700 °C 下,由农业残留 物产生的生物质炭抵消了每吨生物质 200~470 kg CO₂当量的碳排放。生物质炭的添加还可减少土壤 温室气体排放^[6-7],在实现固碳减排和农林业可持续 发展领域有一定的应用前景。

不同原材料以及不同热解温度、升温速率和恒温

时间等条件均影响生物质炭理化性质^[8-12]。Zhang 等^[9]的研究结果表明:不同的生物质原材料,如念珠 异木麻黄[Allocasuarina torulosa (Aiton) L. A. S. Johnson]、蒙达利松(Pinus radiata D. Don)、甘蔗 (Saccharum officinarum Linn.)和花生(Arachis hypogaea Linn.)壳,即使在相同热解条件下制备的生 物质炭的理化性质也会存在差异。目前,生物质炭制 备的原材料主要来自作物秸秆^[13]、稻壳^[14]、动物粪 便^[15]和城市污泥^[16]等,而关于林木废弃物炭化利用 的报道还较少。杨树(Populus spp.)作为中国传统的 绿化和造林树种,生长迅速,木材资源丰富,采伐剩余 物和木材加工剩余物产量巨大^[17],焚烧、填埋和堆肥 等传统处理方法造成大量的资源浪费,且处理效率 低、成本高,还可能造成二次污染。因此,探索高效、 绿色、安全的杨树废弃物资源化利用方法非常迫切。 当前,将废弃物热解制备成生物质炭,是生物质资源 化利用的一种新途径,不仅能有效处理杨树废弃物, 还可减少对环境的污染,符合农林废弃物绿色、低碳 处理和利用的发展方向。

热解温度对生物质炭产率、pH 值、电导率、养分 含量和比表面积等性质的影响较大。通常情况下,较 高的热解温度会降低生物质炭产率[11],但有利于增 加生物质炭的稳定性及比表面积^[18-19]。Cross 等^[18] 的研究结果表明:与热解温度 350 ℃相比,热解温度 550 ℃下制备的生物质炭稳定性更高。徐亮等^[12]认 为,生物质炭的表面官能团数量与热解温度显著相 关,-CH,和-CH,等官能团随着热解温度的升高而减 少,而芳香性C=C含量逐渐升高。升温速率同样影 响生物质炭结构,Angin^[11]认为生物质炭比表面积随 着升温速率的增加而减小,然而, Mohanty 等^[20]认为 生物质炭比表面积随着升温速率的增加而显著增加。 恒温时间影响生物质炭产率,Zhang 等^[21]报道了在相 同的热解温度下,生物质炭产率随着恒温时间的增加 而降低,而 Peng 等^[10]发现稻秆生物质炭的产率随着 恒温时间的增加而升高,还有部分学者^[21-22]认为生 物质炭制备过程中的恒温时间对生物质炭的性质没 有显著影响。

本研究以杨树枝条为原材料制备生物质炭,选择 制备生物质炭常用的热解温度(300 ℃~700 ℃)和慢 速升温速率(10~50 ℃·min⁻¹)探究其对生物质炭产 率和理化性质的影响,探索杨树枝条生物质炭制备工 艺,为杨树生物质炭在土壤改良、环境修复和固碳减 排等方面的应用提供依据。

1 材料和方法

1.1 材料

供试材料为美洲黑杨 (*Populus deltoides* W. Bartram ex Marshall)和小叶杨 (*P. simonii* Carr.)杂交 F_1 代群体,种植于江苏省句容市下蜀林场,于 2021 年冬季采集 1~3 年生修剪枝条,混合后自然风干,粉 碎后过孔径 1 cm 筛,密封备用。将上述样品于 105 ℃烘干后过 100 目筛,其 C、N、P 和 K 含量分别 为 43.17、1.36、0.89 和 3.41 g·kg⁻¹。

采用厌氧升温炭化法制备生物质炭,具体操作过程为:将自然风干的杨树枝条碎屑(含水率19.03%)装入铝罐,加盖密封后放入KSL-1200X马弗炉(合肥

科晶材料技术有限公司)中,分别以升温速率 10、30 和50 ℃ · min⁻¹ 升温至 300 ℃、400 ℃、500 ℃、 600 ℃、700 ℃,保持 1 h,冷却至室温。将制备的生 物质炭研磨后分别过 40 目筛(用于测定表面形貌) 和 100 目筛(用于测定元素含量、比表面积及表面官 能团),于 105 ℃烘干 24 h,装入自封袋密封保存,用 于后续指标测定。

1.2 方法

1.2.1 生物质炭产率、灰分含量、pH 值和电导率测定 使用 YH-M50002 电子天平(精度 0.01 g,瑞安市 英衡电器有限公司)称取 50.00 g 自然风干的杨树枝 条碎屑(m_1)装入铝罐,密封放入马弗炉中热解制备 生物质炭,冷却后称量其质量(m_2)。生物质炭产率 的计算公式为:生物质炭产率= $\frac{m_2}{m_1 \cdot (1-C_m)}$ ×100%, 其中, C_m 为自然风干的杨树枝条碎屑的含水率。重 复测定 6 次。

参照 GB/T 17664—1999 中的方法测定生物质炭 灰分含量,使用雷磁 PHS-3E 型 pH 计(上海雷磁科 学仪器厂)测定生物质炭 pH 值,使用雷磁 DDS-307 型电导率仪(上海雷磁科学仪器厂)测定生物质炭电 导率,其中,生物质炭与水的质量比为1:20。重复 测定3次。

1.2.2 生物质炭元素含量测定 使用 PE2400 Ⅱ 元素 分析仪(美国 PerkinElmer 公司)测定生物质炭中 C、 N 和 H 含量,使用 iCAP 7400 双通道电感耦合等离子 体发射光谱仪(美国 Thermo Fisher 公司)测定生物质 炭中 K、Ca、Na 和 Mg 含量。重复测定 3 次。

1.2.3 生物质炭形貌特征分析 使用 ASAP 2020 全 自动比表面积孔隙度分析仪(美国 Micromeritics 公 司)测定生物质炭的比表面积、平均孔径、微孔面积、 微孔体积和总孔容,通过 BET 和 BJH 模型法进行测 算分析;使用 Quanta 200 环境扫描电子显微镜(美国 FEI 公司,1 000 倍)观察生物质炭的表面形貌;采用 KBr 固体压片法^[23],使用 VERTEX 80V 傅里叶变换 红外光谱仪(德国 Bruker 公司)在波数 400~4 000 cm⁻¹、分辨率 1 cm⁻¹条件下扫描生物质炭,对其表面 官能团进行定性分析。

1.3 数据统计和分析

利用 EXCEL 2010 软件对数据进行汇总和整理, 利用 SPSS 20.0 软件进行双因素方差分析(two-way ANOVA),采用 Duncan's 新复极差法(P<0.05)进行 多重比较,利用 Origin 9.0 软件绘图。

2 结果和分析

2.1 不同热解条件对杨树枝条生物质炭产率和灰分 含量的影响

不同热解温度和升温速率下杨树枝条生物质炭 产率和灰分含量的变化见表1。双因素方差分析结 果显示:热解温度对杨树枝条生物质炭的产率和灰分 含量有极显著(P<0.01)影响;升温速率对生物质炭 的产率和灰分含量无显著(P>0.05)影响;热解温度 与升温速率的交互作用对生物质炭产率无显著影响, 但对生物质炭灰分含量有显著(P<0.05)影响。

由表 1 可见:同一升温速率下,杨树枝条生物质 炭产率均随着热解温度的升高而降低,热解温度 300 ℃、400 ℃和500 ℃间的生物质炭产率存在显著 差异,且显著高于热解温度 600 ℃和700 ℃;而热解 温度 600 ℃和700 ℃间的生物质炭产率差异不显著。 热解温度 400 ℃和 600 ℃下,升温速率 30 和 50 ℃・min⁻¹条件下的生物质炭产率总体显著高于 升温速率 10 ℃・min⁻¹;其他热解温度下,不同升温 速率间的生物质炭产率差异不显著。热解温度 300 ℃、升温速率 10 ℃・min⁻¹条件下的生物质炭产 率最高,达 89.39%。热解温度 700 ℃下,升温速率 10、30 和 50 ℃・min⁻¹条件下的生物质炭产率分别较 热解温度 300 ℃降低了 70.76%、70.24%和 68.93%。

由表1还可见:同一升温速率下,杨树枝条生物 质炭灰分含量均随着热解温度的升高而升高,热解温 度 300 °C、400 °C和 500 °C间的生物质炭灰分含量差 异显著,且显著低于热解温度 700 °C;升温速率 10 和 30 °C・min⁻¹下,热解温度 600 °C和 700 °C间的生物 质炭灰分含量差异不显著;升温速率 50 °C・min⁻¹ 下,热解温度 600 °C和 700 °C间的生物质炭灰分含量 存在显著差异。除热解温度 400 °C下,升温速率 50 °C・min⁻¹条件下的生物质炭灰分含量显著高于 升温速率 10 和 30 °C・min⁻¹外,其他热解温度下的 生物质炭灰分含量在不同升温速率间差异不显著。 热解温度 700 °C下,升温速率 10、30 和 50 °C・min⁻¹ 条件下的生物质炭灰分含量分别较热解温度 300 °C 提高了 135.55%、119.35%和 124.42%。

2.2 不同热解条件对杨树枝条生物质炭 pH 值和电 导率的影响

不同热解温度和升温速率下杨树枝条生物质炭 pH 值和电导率的变化见表 2。双因素方差分析结果 显示:热解温度对杨树枝条生物质炭的 pH 值和电导 率有极显著(P<0.01)影响;升温速率对生物质炭的 pH 值和电导率无显著(P>0.05)影响;热解温度与升 温速率的交互作用对生物质炭的 pH 值和电导率分 别有显著(P<0.05)和极显著影响。

由表 2 可见:同一升温速率下,杨树枝条生物质炭 pH 值均随着热解温度的升高而升高,且不同热解温度间的生物质炭 pH 值总体差异显著。热解温度400 ℃下,升温速率30 和 50 ℃・min⁻¹条件下的生物质炭 pH 值显著高于升温速率 10 ℃・min⁻¹条件下的生物质炭 pH 值显著高于升温速率50 ℃・min⁻¹条件下的生物质炭 pH 值显著高于升温速率50 ℃・min⁻¹;其

```
表 1 不同热解温度和升温速率下杨树枝条生物质炭产率和灰分含量的变化 (\overline{X} \pm SD)<sup>1)</sup>
Table 1 Changes of yield and ash content in poplar branch biochars at different pyrolysis temperatures and heating rates (\overline{X} \pm SD)<sup>1)</sup>
```

升温速率/(℃・min ⁻¹) Heating rate	- 不同热解温度下的生物质炭产率/% Yield of biochar at different pyrolysis temperatures						
	300 °C	400 °C	500 °C	600 °С	700 °C		
10	89.39±7.11Aa	$41.00{\pm}1.61\rm{Bb}$	32.78±0.49Ca	$26.62{\pm}0.74\mathrm{Db}$	26.14±0.86Da		
30	85.90±5.21Aa	$42.96 \pm 2.38 \text{Bab}$	33.17±0.97Ca	28.39±0.69Da	25.56±0.87Da		
50	85.26±6.32Aa	46.15±5.28Ba	32.89±1.12Ca	28.37±0.58Da	$26.49 \pm 0.88 \text{Da}$		
升温速率/(℃・min ⁻¹)	不同热解温度下的生物质炭灰分含量/% Ash content in biochar at different pyrolysis temperatures						
Heating rate	300 °C	400 °C	500 °C	600 °С	700 °C		
10	7.20±0.15Da	$11.03 \pm 1.21 \text{Cb}$	13.91±0.94Ba	15.94±1.22Aa	16.96±0.17Aab		
30	$7.44 \pm 0.86 \text{Da}$	$10.79{\pm}0.72{\rm Cb}$	14.50±0.54Ba	15.75±0.29Aa	16.32±0.49Aab		
50	7.78±0.57Da	13.01±0.84Ca	14.15±0.33Ba	14.91±0.62Ba	17.46±0.75Aa		

¹⁾ 同行中不同大写字母表示在同一升温速率下不同热解温度间差异显著(P<0.05) Different uppercases in the same row indicate the significant (P<0.05) differences among different pyrolysis temperatures at the same heating rate; 同列中不同小写字母表示在同一热解温度下不同升温速率间差异显著(P<0.05) Different lowercases in the same column indicate the significant (P<0.05) differences among different heating rates at the same pyrolysis temperature.</p>

表 2 不同热	、解温度和升温	速率下杨林	时枝条生物	物质炭 pH 值	和F	电导率的	I变化(X	±SD) ¹⁾							
Table 2 C $(\overline{X}\pm SD)^{(1)}$	hanges of pH	value and	electric	conductivity	of	poplar	branch	biochars	at	different	pyrolysis	temperatures	and	heating	rates

升温速率/(℃・min ⁻¹)	不同热解温度下的生物质炭 pH 值 pH value of biochar at different pyrolysis temperatures						
Heating rate	300 °C	400 °C	500 °C	600 °С	700 °C		
10	5.65±0.02Ea	$7.13 \pm 0.10 \mathrm{Db}$	8.83±0.02Ca	9.22±0.03Ba	9.72±0.04Aa		
30	5.66±0.57Da	7.28±0.02Ca	8.73±0.13Ba	9.51±0.02Aa	9.80±0.03Aa		
50	6.00±0.02Ea	7.28±0.03Da	$8.31{\pm}0.05{\rm Cb}$	9.32±0.36Ba	9.75±0.09Aa		
	不同热解温度下的生物质炭电导率/(mS・cm ⁻¹) Electric conductivity of biochar at different pyrolysis temperatures						
Heating rate	300 °C	400 °C	500 °C	600 °С	700 °C		
10	$0.44 \pm 0.01 \mathrm{Dc}$	0.57±0.05Ca	0.63±0.03Ca	$0.84 \pm 0.05 \text{Bab}$	0.94±0.02Aa		
30	$0.48{\pm}0.01{\rm Cb}$	0.61±0.01Ba	0.63±0.01Ba	0.90 ± 0.04 Aa	$0.88{\pm}0.01{\rm Ab}$		
50	0.55±0.01Da	0.60±0.01Ca	0.62±0.04Ca	$0.82{\pm}0.01\rm{Bb}$	$0.87{\pm}0.03{\rm Ab}$		

¹⁾ 同行中不同大写字母表示在同一升温速率下不同热解温度间差异显著(P<0.05) Different uppercases in the same row indicate the significant (P<0.05) differences among different pyrolysis temperatures at the same heating rate; 同列中不同小写字母表示在同一热解温度下不同升温速率间差异显著(P<0.05) Different lowercases in the same column indicate the significant (P<0.05) differences among different heating rates at the same pyrolysis temperature.</p>

他热解温度下,不同升温速率间的生物质炭 pH 值差 异不显著。热解温度 300 ℃下,不同升温速率条件下 的生物质炭均呈酸性;热解温度 400 ℃下,不同升温 速率条件下的生物质炭均呈弱碱性;热解温度 500 ℃、600 ℃和700 ℃下,不同升温速率条件下生物 质炭的碱性较强。

由表2还可见:同一升温速率下,杨树枝条生物 质炭电导率总体随着热解温度的升高而升高;热解温 度 300 ℃、400 ℃和 500 ℃下,同一升温速率条件下 的生物质炭电导率显著低于热解温度 600 ℃和 700 ℃,其中,热解温度 300 ℃条件下的生物质炭电 导率显著低于热解温度 400 ℃和 500 ℃, 而热解温度 400 ℃和 500 ℃间的生物质炭电导率差异不显著;升 温速率 10 和 50 ℃ · min⁻¹下, 热解温度 600 ℃条件 下的生物质炭电导率显著低于热解温度 700 ℃,而升 温速率 30 ℃ · min⁻¹下, 热解温度600 ℃和 700 ℃间 的生物质炭电导率差异不显著。升温速率 10、30 和 50 ℃ · min⁻¹下,热解温度 700 ℃条件下的生物质炭 电导率分别较热解温度 300 ℃升高了 113.64%、 83.33%和58.18%。热解温度300℃下,不同升温速 率间的生物质炭电导率差异显著;热解温度 600 ℃ 下,升温速率 30 ℃·min⁻¹条件下的生物质炭电导率 显著高于升温速率 50 ℃ · min⁻¹, 而与升温速率 10 ℃ · min⁻¹间差异不显著;热解温度700 ℃下,升温 速率 10 ℃ · min⁻¹条件下的生物质炭电导率显著高 于升温速率 30 和 50 °C · min⁻¹, 而升温速率 30 和 50 ℃ · min⁻¹间的生物质炭电导率差异不显著;热解 温度 400 ℃和 500 ℃下,不同升温速率间的生物质炭 电导率差异不显著。

2.3 不同热解条件对杨树枝条生物质炭元素组成的 影响

不同热解温度和升温速率下杨树枝条生物质炭 元素组成的变化见表 3。双因素方差分析结果显示: 热解温度对生物质炭 C、N、H、K、Ca、Na 和 Mg 含量以 及 C/H 比有极显著(P<0.01)影响;升温速率对生物 质炭 C、N、H 和 Na 含量无显著(P>0.05)影响,对 C/H 比有显著(P<0.05)影响,对 K、Ca 和 Mg 含量有 极显著影响;热解温度和升温速率的交互作用对生物 质炭 K、Ca、Na 和 Mg 含量有极显著影响,对生物质炭 H 含量有显著影响,对 C 和 N 含量及 C/H 比无显著 影响。

由表 3 可见:除热解温度 300 ℃外,其他热解温 度条件下的生物质炭 C 含量均在 60%以上。同一升 温速率下,生物质炭 C 含量随着热解温度的升高而 升高;热解温度 600 ℃和 700 ℃间的生物质炭 C 含量 差异不显著,但总体显著高于热解温度 300 ℃、 400 ℃和 500 ℃,且热解温度 300 ℃、400 ℃和 500 ℃ 间的生物质炭 C 含量差异显著。升温速率 10、30 和 50 ℃・min⁻¹下,与热解温度 300 ℃和比较,热解温度 700 ℃条件下的生物质 C 含量的增幅分别为53.85%、 50.25%和 53.10%。热解温度 300 ℃下,升温速率 30 和 50 ℃・min⁻¹条件下的生物质炭 C 含量显著高于 升温速率 10 ℃・min⁻¹;热解温度 400 ℃下,不同升 温速率间的生物质炭 C 含量差异显著;热解温度 500 ℃、600 ℃和700 ℃下,不同升温速率间的生物质 炭 C 含量均差异不显著。

由表 3 还可见:同一升温速率下,生物质炭 N 含 量随着热解温度的升高呈先升高后降低的变化趋势, 在热解温度 400 ℃或 500 ℃时达到峰值,热解温度升 至 700 ℃时最低,且显著低于其他热解温度。热解温 度 300 ℃下,升温速率 10 和 30 ℃ · min⁻¹条件下的 生物质炭 N 含量显著高于升温速率 50 ℃ · min⁻¹; 热解温度 400 ℃下,升温速率 10 ℃ · min⁻¹; 条件下的生物质炭 N 含量显著高于升温速率 30 和 50 ℃ · min⁻¹;热解温度 300 ℃和 400 ℃下,升温速率 50 ℃ · min⁻¹;条件下的生物质炭 N 含量分别较升温 速率10 ℃ · min⁻¹降低了 10.66%和 4.65%。热解温 度 500 ℃、600 ℃和 700 ℃下,不同升温速率间的生物质炭 N 含量均差异不显著。

由表 3 还可见:同一升温速率下,生物质炭 H 含 量随着热解温度的升高而降低,且不同热解温度间均 存在显著差异。升温速率 10、30 和 50 \degree ・min⁻¹下, 与热解温度 300 \degree 相比较,热解温度 700 \degree 条件下的 生物质 H 含量的降幅分别为 83.12%、81.18% 和 80.73%。热解温度 300 \degree 、400 \degree 和 600 \degree 下,不同 升温速率间的生物质炭 H 含量差异不显著;热解温 度 500 \degree 和 700 \degree 下,生物质炭 H 含量随着升温速 率的增加而升高,且在不同升温速率间存在显著 差异。

由表3还可见:同一升温速率下,生物质炭 C/H

表 3 不同热解温度和升温速率下杨树枝条生物质炭元素组成的变化($\overline{X}\pm SD$)¹⁾ Table 3 Changes of element composition of poplar branch biochars at different pyrolysis temperatures and heating rates ($\overline{X}\pm SD$)¹⁾

升温速率/(℃・min ⁻¹)	不同热解温度下的生物质炭 C 含量/% C content in biochar at different pyrolysis temperatures							
Heating rate	300 °C	400 °C	500 ℃	600 °C	700 °C			
10	49.45±0.46Db	67.26±0.09Ca	71.40±0.13Ba	74.26±0.80Aa	76.08±2.87Aa			
30	50.35±0.36Da	65.94 ± 0.33 Cb	$71.69 \pm 0.46 Ba$	75.53±2.08Aa	75.65±3.14Aa			
50	50.92±0.07Da	$64.78 \pm 0.47 \mathrm{Cc}$	$73.30{\pm}4.08\text{Ba}$	74.99±0.85ABa	77.96±1.12Aa			
升温速率/(℃・min ⁻¹)	不同热解温	温度下的生物质炭 N 含量/9	% N content in bio	char at different pyrolysis to	emperatures			
Heating rate	300 °C	400 °C	500 °C	600 °С	700 ℃			
10	1.22±0.02Ba	1.29±0.02Aa	1.27±0.01Aa	1.18±0.03Ca	0.97±0.02Da			
30	1.20±0.01BCa	$1.22 \pm 0.02 \text{ABb}$	1.24±0.03Aa	1.11±0.05Ca	$0.91 \pm 0.04 \text{Da}$			
50	$1.09{\pm}0.03{\rm Bb}$	$1.23 \pm 0.02 \mathrm{Ab}$	1.24±0.04Aa	1.12±0.01Ba	0.92±0.04Ca			
升温速率/(℃・min ⁻¹)	不同热解温	温度下的生物质炭 H 含量/9	% H content in bio	char at different pyrolysis to	emperatures			
Heating rate	300 °C	400 °C	500 °C	600 °C	700 °C			
10	5.45±0.40Aa	3.68±0.10Ba	2.35 ± 0.02 Cc	1.68±0.08Da	$0.92 \pm 0.01 \text{Eb}$			
30	5.10±0.17Aa	3.73±0.06Ba	$2.43{\pm}0.04{\rm Cb}$	1.77±0.05Da	$0.96 \pm 0.03 \text{Eab}$			
50	5.24±0.02Aa	3.84±0.12Ba	2.50 ± 0.04 Ca	1.76±0.03Da	1.01±0.04Ea			
升温速率/(℃・min ⁻¹)	不同热解	不同热解温度下的生物质炭 C/H 比 C/H ratio of biochar at different pyrolysis temperatures						
Heating rate	300 °C	400 °C	500 ℃	600 °C	700 °C			
10	9.11±0.69Ea	18.27±0.50Da	30.38±0.18Ca	44.25±1.63Ba	82.38±2.53Aa			
30	9.88±0.31Ea	$17.19 \pm 0.44 \text{Db}$	29.51±0.60Ca	42.76±1.21Ba	78.79±1.24Aa			
50	9.71±0.03Ea	$17.38 \pm 0.16 \text{Db}$	29.35±1.27Ca	42.61±0.41Ba	77.04±4.06Aa			
升温速率/(℃・min ⁻¹)	不同热解温度下的生物质炭 K 含量/(g・kg ⁻¹) K content in biochar at different pyrolysis temperatures							
Heating rate	300 °C	400 °C	500 °C	600 °C	700 °C			
10	4.44±0.03Db	6.75±0.09Cc	9.82±0.14Ba	$9.92 \pm 0.12 Bb$	11.35±0.26Aa			
30	5.22±0.04Ea	$7.20 \pm 0.01 \mathrm{Db}$	9.36±0.07Ca	$9.62 \pm 0.26 \mathrm{Bb}$	11.20±0.16Aa			
50	5.17±0.02Ea	7.72±0.02Da	9.43±0.38Ca	10.48±0.14Ba	11.11±0.12Aa			
升温速率/(℃・min ⁻¹)	不同热解温度下	う的生物质炭 Ca 含量/(g・	kg ⁻¹) Ca content	in biochar at different pyrol	ysis temperatures			
Heating rate	300 °C	400 °C	500 ℃	600 °C	700 ℃			
10	19.08±0.04Eb	$20.46 \pm 0.18 \mathrm{Dc}$	33.00±0.42Ba	30.53 ± 0.33 Cb	35.47±0.07Aa			
30	23.96±0.33Ca	$24.29{\pm}0.42{\rm Cb}$	$30.25{\pm}0.01\rm{Bb}$	$30.37{\pm}0.50{\rm Bb}$	$34.91{\pm}0.01\rm{Ab}$			
50	23.64±0.08Ca	29.76±0.60Ba	$27.77{\pm}0.41{\rm Bc}$	34.58±0.51Aa	$33.80 \pm 0.34 \mathrm{Ac}$			

升温速率/(℃・min ⁻¹) Heating rate	- 不同热解温度下的生物质炭 Na 含量/(g・kg ⁻¹) Na content in biochar at different pyrolysis temperatures							
	300 °C	400 °C	500 °C	600 °С	700 °C			
10	$0.33 \pm 0.01 \mathrm{Db}$	0.40±0.01Cc	0.52±0.01Ba	0.63±0.02Aa	0.62±0.01Aa			
30	0.37±0.01Da	$0.45 \pm 0.01 \mathrm{Cb}$	0.55±0.03Ba	$0.55{\pm}0.01{\rm Bb}$	0.62±0.02Aa			
50	0.37±0.01Da	0.50±0.01Ca	0.53±0.01Ba	0.59±0.03Aab	$0.55{\pm}0.01{\rm ABb}$			
升温速率/(℃・min ⁻¹)	不同热解温度下的生物质炭 Mg 含量/(g・kg ⁻¹) Mg content in biochar at different pyrolysis temperatures							
Heating rate	300 °C	400 °C	500 °C	600 °С	700 °C			
10	$1.35 \pm 0.01 \mathrm{Dc}$	$1.88 \pm 0.01 \mathrm{Cc}$	2.68±0.03Ba	$2.65{\pm}0.04{\rm Bb}$	3.10±0.02Aa			
30	$1.60 \pm 0.00 \text{Da}$	$2.00{\pm}0.01{\rm Cb}$	$2.51{\pm}0.10{\rm Bb}$	$2.54{\pm}0.07{\rm Bc}$	3.11±0.06Aa			
50	$1.57 \pm 0.01 \mathrm{Eb}$	2.27±0.01Da	$2.50{\pm}0.08{\rm Cb}$	2.76±0.02Ba	$3.01 \pm 0.01 \mathrm{Ab}$			

续表3 Table 3 (Continued)

¹⁾ 同行中不同大写字母表示在同一升温速率下不同热解温度间差异显著(P<0.05) Different uppercases in the same row indicate the significant (P<0.05) differences among different pyrolysis temperatures at the same heating rate; 同列中不同小写字母表示在同一热解温度下不同升温速率间差异显著(P<0.05) Different lowercases in the same column indicate the significant (P<0.05) differences among different heating rates at the same pyrolysis temperature.</p>

比随着热解温度的升高而增加,且不同热解温度间 均存在显著差异。除热解温度 400 ℃下,升温速率 10 ℃・min⁻¹条件下的生物质炭 C/H 比显著高于升 温速率 30 和 50 ℃・min⁻¹外,其他热解温度条件下 的生物质炭 C/H 比在不同升温速率间差异不显著。

由表3还可见:同一升温速率下,生物质炭的K、 Ca、Na 和 Mg 含量总体上随着热解温度的升高而升 高。升温速率 10、30 和 50 °C · min⁻¹下,热解温度 700 ℃条件下的生物质炭 K 和 Mg 含量达到最大值, 相较于热解温度 300 ℃的增幅分别为 155.63%、 114.56%、114.89%和129.63%、94.38%、91.72%,差异 均达显著水平。热解温度 300 ℃和 400 ℃下,升温速 率由10 ℃ · min⁻¹增加至 50 ℃ · min⁻¹时,生物质炭 K含量的增幅分别为16.44%和14.37%,生物质炭Ca 含量的增幅分别为 23.90% 和 45.45%, 生物质炭 Na 含量的增幅分别为 12.12% 和 25.00%, 生物质炭 Mg 含量的增幅分别为 16.30% 和 20.74%, 差异均达显著 水平。热解温度 500 ℃和 600 ℃下,随着升温速率的 增加,生物质炭中这4种元素含量的变化趋势各异。 热解温度 700 ℃下,升温速率由 10 ℃・min⁻¹ 増加至 50 ℃ · min⁻¹时,生物质炭的 K、Ca、Na 和 Mg 含量的 降幅分别为2.11%、4.71%、11.29%和2.90%,且生物 质炭的 Ca、Na 和 Mg 含量的降幅达显著水平。

2.4 不同热解条件对杨树枝条生物质炭比表面积和 孔隙结构的影响

不同热解温度和升温速率下杨树枝条生物质炭 比表面积和孔隙结构的变化分别见表 4。由表 4 可 见:同一升温速率下,生物质炭比表面积和总孔容随 着热解温度的升高总体呈增大的趋势。随着热解温 度的升高,升温速率 10 和 30 ℃ · min⁻¹条件下的生物质炭平均孔径总体呈先增大后减小的趋势,升温速率50 ℃ · min⁻¹条件下的生物质炭平均孔径呈"减小—增大—减小"的趋势。热解温度 300 ℃ 下,3 种升温速率条件下的生物质炭均未出现微孔结构。随着热解温度的升高,升温速率 10 和 50 ℃ · min⁻¹条件下的生物质炭微孔面积和微孔体积呈先增大后减

表4 不同热解温度和升温速率下杨树枝条生物质炭比表面积和孔隙 结构的变化¹⁾

Table 4 Changes of specific surface area and pore structure of poplar branch biochars at different pyrolysis temperatures and heating rates 1

升温速 率/(℃・min ⁻¹)	不同热解温度下的生物质炭比表面积/(m ² ・g ⁻¹) Specific surface area of biochar at different pyrolysis temperatures						
Treating Tate -	300 °C	400 ℃	500 ℃	600 °C	700 ℃		
10	1.10	1.22	19.12	74.33	154.59		
30	1.29	1.63	2.46	169.64	217.65		
50	1.57	2.50	2.23	79.78	140.23		
升温速 率/(℃・min ⁻¹)	不同热解温度下的生物质炭平均孔径/nm Average pore width of biochar at different pyrolysis temperatures						
ficuling futo	300 ℃	400 °C	500 °C	600 °C	700 ℃		
10	4.141	9.463	3.893	3.563	2.669		
30	3.526	5.589	3.145	2.029	2.392		
50	5.523	1.482	3.133	3.082	2.755		
升温速 率/(℃・min ⁻¹) Heating rate	不同热解温度下的生物质炭微孔面积/(cm ² ・g ⁻¹) Micropore area of biochar at different pyrolysis temperatures						
	300 °C	400 ℃	500 ℃	600 °C	700 ℃		
10	_	2.02	2.98	172.17	103.75		
30	_	0.01	3.24	146.54	158.18		
50	_	1.11	2.60	129.08	82.26		

续表 4 Table 4	(Continu	ed)					
升温速 率/(℃・min ⁻¹) Heating rate	不同热解温度下的生物质炭微孔体积/(cm ³ ・g ⁻¹) Micropore volume of biochar at different pyrolysis temperatures						
Treating Tate -	300 ℃	400 ℃	500 ℃	600 ℃	700 ℃		
10	_	0.001 3	0.001 5	0.091 2	0.055 1		
30	_	0.000 0	0.001 6	0.071 3	0.083 9		
50	—	0.000 6	0.001 4	0.061 0	0.043 9		
升温速 率/(℃・min ⁻¹)	不同热解温度下的生物质炭总孔容/(m ³ ・g ⁻¹) Total pore volume of biochar at different pyrolysis temperatures						
Treating Tate -	300 ℃	400 °C	500 ℃	600 °C	700 ℃		
10	0.001	0.003	0.019	0.069	0.103		
30	0.001	0.002	0.015	0.086	0.130		
50	0.002	0.003	0.016	0.061	0.097		

¹⁾—:无数据 No datum.

小的趋势,在热解温度600 ℃下达到最大值;升温速 率 30 ℃ ·min⁻¹条件下的生物质炭微孔面积和微孔 体积呈逐渐增大的趋势。

2.5 不同热解条件对杨树枝条生物质炭表面形貌的 影响

不同热解温度和升温速率下杨树枝条生物质炭 的电镜扫描图见图 1。由图 1 可见:杨树枝条生物质 炭具有大量疏松的孔隙结构,且孔隙随着热解温度的 升高而增大。热解温度 300 ℃下,不同升温速率条件 下的生物质炭表面粗糙,出现少量絮状物质,此时并 未形成明显孔隙结构;热解温度 400 ℃下,生物质炭 表面絮状物质减少,具有一些层状结构;热解温度升 高至 500 ℃和 600 ℃时,生物质炭层状结构明显,出

A,B,C: 分别为升温速率 10、30 和 50 ℃ · min⁻¹ Heating rate of 10, 30, and 50 ℃ · min⁻¹, respectively; 1,2,3,4,5: 分别为热解温度 300 ℃、400 ℃、500 ℃、600 ℃和 700 ℃ Pyrolysis temperature of 300 ℃, 400 ℃, 500 ℃, 600 ℃, and 700 ℃, respectively.

图 1 不同热解温度和升温速率下杨树枝条生物质炭的扫描电镜图 Fig. 1 Scanning electron micrographs of poplar branch biochars at different pyrolysis temperatures and heating rates

现蜂窝状孔隙,且表面有许多团聚的固体小颗粒;热 解温度升高至700℃时,生物质炭较脆、易碎,表面孔 隙部分坍塌,骨架结构被破坏。不同升温速率条件下 的生物质炭表面形貌变化不明显。

2.6 不同热解条件对杨树枝条生物质炭表面官能团 的影响

不同热解温度和升温速率下杨树枝条生物质炭 傅里叶变换红外光谱图见图 2。由图 2 可见: 波数 700~900 cm⁻¹之间的吸收峰表明单一环和多环化合物的存在,随着热解温度的升高,该吸收峰向波数增大的方向偏移。

波数 1 000~1 300 cm⁻¹之间的吸收峰一般由生物质炭中醇类、醚类、酯类和酚类的 C-O 伸缩振动导致。波数 1 040 cm⁻¹附近为纤维素或半纤维素的 C-O-C 吸收峰,仅热解温度 300 ℃条件下的生物质炭明显出现该吸收峰,热解温度大于等于400 ℃时该

A,B,C:分别为升温速率 10、30 和 50 ℃ · min⁻¹ Heating rate of 10, 30, and 50 ℃ · min⁻¹, respectively.

图 2 不同热解温度和升温速率下杨树枝条生物质炭傅里叶变换红外 光谱图

吸收峰几乎不显示。热解温度 300 ℃下,升温速率 10、30 和 50 ℃ · min⁻¹条件下C-O-C 吸收峰对应的 波数分别为 1 038、1 036 和1 037 cm⁻¹。

波数1400~1750 cm⁻¹之间吸收峰的出现表明 生物质炭中形成了醛类、酯类和酮类等脂肪族以及难 降解的芳香族化合物。波数 1 430 cm⁻¹左右的吸收 峰对应苯环中 C = C 伸缩振动,热解温度 300 ℃ 和 400 ℃时未出现该吸收峰,而热解温度 500 ℃及以上 时出现该吸收峰;波数 1 600~1 750 cm⁻¹对应羧基或 羰基中 C=O 伸缩振动。波数 1 622 cm⁻¹左右的吸收 峰总体呈现出随着热解温度的升高而伸缩振动减弱 的趋势。同一热解温度下,生物质炭脂肪族和芳香族 化合物的吸收峰随着升温速率的增加总体增强。

不同热解条件下制备的 15 种生物质炭在波数 2 920 cm⁻¹左右的吸收峰对应饱和烃基的-CH₃和 -CH₂对称或非对称伸缩振动;波数3 200~3 500 cm⁻¹ 出现明显的吸收峰,该吸收峰来自分子间氢键缔合的 醇羟基或酚羟基的-OH 伸缩振动。-OH、-CH₃和 -CH₂的伸缩振动总体随着热解温度的升高明显减 弱,说明热解温度过高会导致大量脂肪族、醇类和酚 类物质的分解。在热解温度 500 ℃~700 ℃下,随着 升温速率的增加,对应-OH 伸缩振动明显增强,而 -CH₃和-CH,伸缩振动相对减弱。

3 讨论和结论

3.1 热解条件对杨树枝条生物质炭产率及物理结构 的影响

本研究中,同一升温速率下,随着热解温度的升 高,杨树枝条生物质炭产率下降。热解温度300℃和 400 ℃时,纤维素和半纤维素大量分解,挥发性物质 大量减少,生物质炭产率下降幅度较大;热解温度升 高至 500 ℃时,纤维素、半纤维素和木质素已大量分 解,剩余的为难分解有机物质,因此热解温度较高时 (600 ℃和700 ℃)杨树枝条生物质炭产率变化不显 著(P>0.05)。叶协锋等^[24]的研究结果显示生物质 炭产率随着热解温度的升高逐渐降低,由100℃升高 至 800 ℃,生物质炭产率由 89.6%下降至 10.0%,与 本研究结果一致。本研究中,双因素分析结果结果表 明升温速率对生物质炭产率无显著影响,但不同热解 温度下,生物质炭产率的变化趋势不一致。Ahmad 等^[25]认为,升温速率对生物质炭产率影响较小:Zhao 等[19]也认为,同一热解温度下,升温速率与生物质炭 产率无显著相关性。

生物质炭因其比表面积、总孔容和微孔面积大等 特点而具有良好的吸附性能,可以将 N、P、K 等养分 元素吸附固定在土壤表层,从而提高植物的养分利用

Fig. 2 Fourier transform infrared spectrum of poplar branch biochars at different pyrolysis temperatures and heating rates

率。叶协锋等[24]的研究结果表明:较高的热解温度 (600 ℃和700 ℃)可以去除活性物质,形成更多相对 较小的孔隙,增加生物质炭的总孔隙体积。热解温度 过高(700 ℃)时,维管束被破坏,固体基质收缩,导致 生物质炭结构坍塌和破碎[24,26],因此,虽然比表面积 和总孔容增大,但微孔面积和微孔体积总体减小。本 研究中,杨树枝条在热解温度较低(300℃)时未热解 完全,且未形成微孔结构,随着热解温度的升高,热解 温度 600 ℃和 700 ℃条件下生物质炭比表面积与总 孔容达到较高水平,且杨树枝条生物质炭相较秸秆生 物质炭具有更大的比表面积^[24,27]。如郭晓慧等^[27]的 研究结果表明:小麦(Triticum aestivum Linn.)秸秆生 物质炭在 600 ℃下比表面积达到最大值,仅 4.700 7 m² · g⁻¹。热解温度 300 ℃时,杨树枝条生物质炭表 面具有熔融层,随着热解温度的升高,生物质炭熔融 层逐渐消失,片状结构清晰,具有较高的孔隙度,可能 是由于随着热解温度的升高,挥发性有机分子析出产 生较大的内压,凝聚形成开链结构导致^[27]。

3.2 热解条件对杨树枝条生物质炭理化性质的影响

本研究中,同一升温速率下,杨树枝条生物质炭 pH值和灰分含量随着热解温度的升高而升高,这与 已有的研究结果^[9,28]一致。如丁思惠等^[29]的研究结 果表明:热解温度 300 ℃、500 ℃和 700 ℃条件下制 备的杨树树皮、树枝和树叶以及秸秆生物质炭均呈碱 性,且随着热解温度的升高,pH 值、电导率和灰分含 量增加。王宏燕等^[30]研究发现,随着热解温度的升 高,水稻(*Oryza sativa* Linn.)秸秆生物质炭电导率升 高,玉米(*Zea mays* Linn.)和大豆〔*Glycine max* (Linn.) Merr.]秸秆生物质炭电导率却逐渐降低。杨 树枝条生物质炭 pH 值低于相同热解条件下秸秆生 物质炭和大部分木质炭^[9,11,25,31-32],这可能是因为不 同植物中养分元素种类及含量存在差异,从而导致生 物质炭性质不同^[9]。

通常,热解温度较低时生物质炭表面有机阴离子 含氧官能团(-COO-)数量较多,因此生物质炭中会 含有酸性物质^[33],导致生物质炭 pH 值较低。随着热 解温度的升高,纤维素和木质素受热分解,羧基和羟 基等酸性官能团中较弱的氢键断裂,酸性官能团减 少^[34],pH 值逐渐升高。此外,随着热解温度的升高, 生物质炭产率降低,其含有的矿质元素(Na、Ca和 Mg 等)和碳酸盐含量相对增加^[9,35],杨树枝条生物质炭 中矿质元素的积累表现为灰分含量的增加,这也是热 解温度较高时生物质炭呈碱性的重要原因之一。本研究中,热解温度 600 ℃和 700 ℃条件下的生物质炭 Na 含量总体无显著增加,这与生物质炭 pH 值在热解 温度 600 ℃和 700 ℃下趋于稳定相吻合。

C/H 比是评估生物质炭产生芳香环结构的热化 学变化程度的重要指标,较高的 C/H 比意味着较多 的芳香环结构和较高的稳定性[36]。随着热解温度的 升高,杨树枝条生物质炭 C 含量升高,而 H 含量降 低,C/H 比显著(P<0.05)增加,说明较高的热解温度 会使生物质炭中较稳定的 C 含量增加^[18,36],同时, -CH,和-CH,在热解温度 700 ℃时基本消失,形成了 难降解的芳香族化合物,也表明生物质炭性质更加稳 定^[23]。本研究中,除热解温度 300 ℃外,同一热解温 度下,随着升温速率的增加,生物质炭-OH 伸缩振动 明显增强,同时较低升温速率(10 ℃ · min⁻¹)条件下 的生物质炭 C/H 比较大,说明杨树枝条生物质炭在 升温速率 10 ℃ · min⁻¹条件下的芳香化程度和碳稳 定性较高。已有研究结果[37-38]表明:较低的升温速 率更有利于芳香族结构的形成,提高生物质炭的稳定 性;升温速率较高时,生物质细胞结构局部熔化和相 变,结构复杂性降低,从而降低生物质炭稳定性。但 低升温速率并不一定意味着生物质炭的稳定性更高, 如 Crombie 等^[39]认为升温速率(5~100 ℃ · min⁻¹) 对生物质炭稳定性没有显著影响。随着热解温度的 升高,杨树枝条生物质炭 N 含量先升高后降低,并在 热解温度 400 ℃或 500 ℃时达到最大值,这可能是由 于低温热解阶段主要是羟基和支链断裂,使H元素以 H,、H,O和CH,等形式损失,从而造成H含量的降低, N 元素损失较少,因此 N 含量出现相对增加的现象。

3.3 不同热解条件下杨树枝条生物质炭的应用前景

生物质炭可能通过改善盐渍土物理、化学和生物 性质发挥重要作用^[40-41]。生物质炭的添加可以调节 土壤 pH 值^[42],增加土壤阳离子交换容量(CEC)^[43], 改良土壤的结构和性质,对提高土壤肥力有较好的效 果^[42,44-46]。本研究中,杨树枝条在较高热解温度 (500 ℃及以上)条件下产生的生物质炭呈强碱性,且 K 和 Na 含量较高,这一特征适用于改良酸性土壤,提 高土壤 pH 值,增加土壤养分。土壤盐碱程度一般用 pH 值、电导率和土壤交换性钠等指标衡量,生物质炭 的碱性特征是制约其在盐碱土壤应用的主要障 碍^[47]。在较低热解温度(300 ℃)下制备的杨树枝条 微孔,在热解温度 400 ℃下制备的杨树枝条生物质炭 呈弱碱性,其C、N和K含量总体显著(P<0.05)高于 热解温度 300 ℃,Na含量也显著升高,但其含量相对 较低。因此,若杨树枝条生物质炭应用于改良碱性土 壤,热解温度 400 ℃、升温速率 10 ℃・min⁻¹可能为 最佳热解条件。

生物质炭具有较大的比表面积、表面负电荷和电 荷密度,其对单位阳离子的吸附能力高于其他土壤有 机质,而且其孔隙结构发达,对土壤中重金属和有机 污染物的吸附能力较强^[48-49]。生物质炭的微孔可以 为微生物提供生境,促进生物多样性[50-52]。生物质 炭表面的低分子量碳氢化合物不仅可作为土壤微生 物的碳源[53],还可以作为刺激或抑制微生物活动和 植物生长的信号分子^[54]。本研究中,热解温度 600 ℃ 和 700 ℃条件下的杨树枝条生物质炭具有较大的比 表面积、微孔面积和微孔体积,具有较强的吸附能力, 该条件下制备的生物质炭更有利于改善土壤结构、提 高地力水平、去除重金属和有机污染物等。热解温度 600 ℃和 700 ℃条件下的生物质炭脂肪族逐渐消失, 而芳香族吸收峰增强,且C含量较高,生物质炭更稳 定^[23],说明其在土壤中的稳定性也会增强^[55],有利 于增加土壤有机质,更适用于土壤固碳。

3.4 结论

综上所述,随着热解温度的升高,杨树枝条生物 质炭产率和 H 含量降低,灰分含量、pH 值、电导率以 及 C 和 K 含量升高,N 含量先升高后降低,比表面积 总体增大,表面官能团数量减少。热解温度 400 ℃、 升温速率 10 ℃・min⁻¹条件下制备的杨树枝条生物 质炭 pH 值呈弱碱性,C 和 N 含量损失较少,较适合 改良碱性土壤;500 ℃~700 ℃条件下制备的生物质 炭 pH 值、灰分含量以及 K 和 Na 含量较高,更适合改 良酸性土壤;600 ℃和 700 ℃条件下制备的生物质炭 比表面积较高,适用于改良重金属和有机物污染的土 壤。基于杨树枝条生物质炭的理化性质,结合土壤改 良和农业生产等的需要,可选择特定条件下制备的杨 树枝条生物质炭直接施用或开发成不同种类的改良 剂,其在农业和环境等领域具有广阔的应用前景。

参考文献:

- [1] BERTERO M, GOROSTEGUI H A, ORRABALIS C J, et al. Characterization of the liquid products in the pyrolysis of residual chañar and palm fruit biomasses[J]. Fuel, 2014, 116: 409-414.
- [2] LIU W J, JIANG H, YU H Q. Emerging applications of biochar-

based materials for energy storage and conversion [J]. Energy and Environmental Science, 2019, 12: 1751-1779.

- [3] HOU Y R, YAN S N, HUANG G G, et al. Fabrication of N-doped carbons from waste bamboo shoot shell with high removal efficiency of organic dyes from water [J]. Bioresource Technology, 2020, 303: 122939.
- [4] CHABI N, BAGHDADI M, SANI A H, et al. Removal of tetracycline with aluminum boride carbide and boehmite particles decorated biochar derived from algae [J]. Bioresource Technology, 2020, 316: 123950.
- [5] CHENG F W, LUO H X, COLOSI L M. Slow pyrolysis as a platform for negative emissions technology: an integration of machine learning models, life cycle assessment, and economic analysis [J]. Energy Conversion and Management, 2020, 223: 113258.
- [6] LIU Q, LIU B J, ZHANG Y H, et al. Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N₂O emissions?
 [J]. Soil Biology and Biochemistry, 2017, 104: 8–17.
- [7] FENG Y Z, XU Y P, YU Y C, et al. Mechanisms of biochar decreasing methane emission from Chinese paddy soils [J]. Soil Biology and Biochemistry, 2012, 46: 80-88.
- [8] LIU W J, JIANG H, YU H Q. Development of biochar-based functional materials: toward a sustainable platform carbon material [J]. Chemical Reviews, 2015, 115: 12251-12285.
- [9] ZHANG H Z, CHEN C R, GRAY E M, et al. Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy[J]. Biomass and Bioenergy, 2017, 105: 136-146.
- [10] PENG X, YE L L, WANG C H, et al. Temperature- and durationdependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China [J]. Soil and Tillage Research, 2011, 112(2): 159-166.
- [11] ANGIN D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake [J]. Bioresource Technology, 2013, 128: 593-597.
- [12] 徐 亮,于晓娜,李雪利,等.不同热解温度制备的烟秆生物炭理化特征分析[J].土壤通报,2021,52(1):75-81.
- [13] 梁 桓,索全义,侯建伟,等.不同炭化温度下玉米秸秆和沙 蒿生物炭的结构特征及化学特性[J].土壤,2015,47(5): 886-891.
- [14] 汤家喜,李 玉,朱永乐,等. 生物炭与膨润土对辽西北风沙 土理化性质的影响研究[J]. 干旱区资源与环境, 2022, 36 (3): 143-150.
- [15] 李尚真,张治宏,易晓辉,等.改性猪粪制生物炭活化过硫酸盐(PS)去除罗丹明 B[J].环境化学,2022,41(3):929-939.
- [16] ZANG T C, WANG H, LIU Y H, et al. Fe-doped biochar derived from waste sludge for degradation of rhodamine B via enhancing activation of peroxymonosulfate [J]. Chemosphere, 2020, 261: 127616.
- [17] 方升佐.中国杨树人工林培育技术研究进展[J].应用生态学报,2008,19(10):2308-2316.
- [18] CROSS A, SOHI S P. A method for screening the relative long-

term stability of biochar [J]. Global Change Biology Bioenergy, 2013, 5: 215-220.

- [19] ZHAO B, O'CONNOR D, ZHANG J L, et al. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar[J]. Journal of Cleaner Production, 2018, 174: 977-987.
- [20] MOHANTY P, NANDA S, PANT K K, et al. Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate [J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 485-493.
- [21] ZHANG J, LIU J, LIU R L. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate[J]. Bioresource Technology, 2015, 176: 288-291.
- [22] ZORNOZA R, MORENO-BARRIGA F, ACOSTA J A, et al. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments [J]. Chemosphere, 2016, 144: 122-130.
- [23] 郑庆福, 王永和, 孙月光, 等. 不同物料和炭化方式制备生物炭结构性质的 FTIR 研究[J]. 光谱学与光谱分析, 2014, 34 (4): 962-966.
- [24] 叶协锋,周涵君,于晓娜,等.热解温度对玉米秸秆炭产率及 理化特性的影响[J].植物营养与肥料学报,2017,23(5): 1268-1275.
- [25] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review [J]. Chemosphere, 2014, 99: 19-33.
- [26] LIU P, PTACEK C J, BLOWES D W, et al. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy [J]. Journal of Hazardous Materials, 2016, 308: 233-242.
- [27] 郭晓慧,康 康,王雅君,等.麦秸与木屑热解制备磁性生物 炭基材料理化性质研究[J].农业机械学报,2018,49(8): 293-300.
- [28] ONAY O. Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor [J]. Fuel Processing Technology, 2007, 88: 523-531.
- [29] 丁思惠,方升佐,田 野,等.不同热解温度下杨树各组分生物质炭的理化特性分析与评价[J].南京林业大学学报(自然科学版),2020,44(6):193-200.
- [30] 王宏燕, 马晓伟, 郑 涵, 等. 温度梯度对秸秆炭化物质产率 及特性的影响[J]. 东北农业大学学报, 2020, 51(1): 65-72.
- [31] 徐 亮, 王豹祥, 汪 健, 等. 不同热解温度制备的水稻秸秆 生物炭理化特性分析[J]. 土壤通报, 2020, 51(1): 136-143.
- [32] 刘慧冉,谢昶琰,康亚龙,等.不同裂解温度对梨树枝条生物 炭理化性质的影响[J].南京农业大学学报,2019,42(5): 895-902.
- [33] YUAN J H, XU R K, ZHANG H. The forms of alkalis in the

biochar produced from crop residues at different temperatures [J]. Bioresource Technology, 2011, 102: 3488-3497.

- [34] KHAN M A, KHAN S, DING X D, et al. The effects of biochar and rice husk on adsorption and desorption of cadmium on to soils with different water conditions (upland and saturated) [J]. Chemosphere, 2018, 193: 1120-1126.
- [35] CAO X D, HARRIS W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation [J]. Bioresource Technology, 2010, 101: 5222-5228.
- [36] 汤嘉雯, 陈金焕, 王凯男, 等. 加拿大一枝黄花生物炭对 Cd²⁺ 的吸附特性及机理[J]. 农业环境科学学报, 2019, 38(6): 1339-1348.
- [37] CALVELO PEREIRA R, KAAL J, CAMPS ARBESTAIN M, et al. Contribution to characterisation of biochar to estimate the labile fraction of carbon [J]. Organic Geochemistry, 2011, 42: 1331-1342.
- [38] CETIN E, MOGHTADERI B, GUPTA R, et al. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars[J]. Fuel, 2004, 83: 2139-2150.
- [39] CROMBIE K, MAŠEK O, CROSS A, et al. Biochar-synergies and trade-offs between soil enhancing properties and C sequestration potential [J]. Global Change Biology Bioenergy, 2015, 7: 1161-1175.
- [40] LIU S L, HOU X Y, YANG M, et al. Factors driving the relationships between vegetation and soil properties in the Yellow River Delta, China[J]. Catena, 2018, 165: 279-285.
- [41] LUO X X, LIU G C, XIA Y, et al. Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China[J]. Journal of Soils and Sediments, 2017, 17: 780–789.
- [42] 孙嘉曼,卜晓莉,吴永波,等.喀斯特山地石灰土施用生物炭 对刺槐幼苗生长和土壤特性的影响[J].生态学杂志,2016, 35(12):3250-3257.
- [43] MUNERA-ECHEVERRI J L, MARTINSEN V, STRAND L T, et al. Cation exchange capacity of biochar: an urgent method modification
 [J]. Science of the Total Environment, 2018, 642: 190–197.
- [44] LANG T, JENSEN A D, JENSEN P A. Retention of organic elements during solid fuel pyrolysis with emphasis on the peculiar behavior of nitrogen [J]. Energy and Fuels, 2005, 19: 1631-1643.
- [45] 时正伦,郭雅倩,周之栋,等.生物炭基肥与平茬措施对喀斯 特土壤养分含量及刺槐幼苗热能的影响[J].植物资源与环境 学报,2019,28(2):71-78.
- [46] 周惠民,李 畅,何丽斯,等. 生物质炭对杜鹃花生长及城市 绿地土壤环境的影响[J]. 江苏农业科学, 2023, 51(5): 172-178.
- [47] ENDERS A, HANLEY K, WHITMAN T, et al. Characterization of biochars to evaluate recalcitrance and agronomic performance [J]. Bioresource Technology, 2012, 114: 644-653.

(下转第91页 Continued on page 91)

第3期

(Suppl. 1): 19-33.

- [15] 吕丽莎, 蔡宏宇, 杨 永, 等. 中国裸子植物的物种多样性格 局及其影响因子[J]. 生物多样性, 2018, 26(11): 1133-1146.
- [16] NIGRIS S, D'APICE G, MOSCHIN S, et al. Fleshy structures associated with ovule protection and seed dispersal in gymnosperms: a systematic and evolutionary overview [J]. Critical Reviews in Plant Sciences, 2021, 40(4): 285-302.
- [17] KERKHOFF A J, MORIARTY P E, WEISER M D. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis
 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(22): 8125-8130.
- CLARKE A, GASTON K J. Climate, energy and diversity [J].
 Proceedings of the Royal Society B: Biological Sciences, 2006, 273(1599): 2257-2266.
- [19] CHEN D D, LIAO J B, BEARUP D, et al. Habitat heterogeneity mediates effects of individual variation on spatial species coexistence [J]. Proceedings of the Royal Society B: Biological Sciences, 2020, 287(1919): 24-36.
- [20] 雷启义,周江菊.黔东南原生态民族文化对植物多样性的影响[J].西南师范大学学报(自然科学版),2009,34(5):88-92.
- [21] 夏吉成,胡 平,王建旭,等.贵州省铜仁汞矿区汞污染特征 研究[J]. 生态毒理学报, 2016, 11(1):231-238.
- [22] 陈 龙,安明态,任娇娇,等.贵州北盘江石漠化区植物群落 物种多样性及主要乔木种间联结性[J].西南大学学报(自然 科学版),2020,42(5):80-94.
- [23] 程东亚,李旭东,杨江州.西南山地流域 NDVI 变化特征及降水敏感性:以贵州沅江流域为例[J].生态学报,2020,40 (4):1161-1174.

- [24] 刘 帆,操 瑜,王 伟,等.乌江梯级水库水陆交错区湿地 植物群落分布格局及多样性初探[J].地球与环境,2019,47
 (6):760-767.
- [25] 王学权,龙启德.贵州独山都柳江源湿地自然保护区功能分区 研究[J].内蒙古林业调查设计,2015,38(3):85-87.
- [26] KALA C P, RATAJC P. High altitude biodiversity of the Alps and the Himalayas: ethnobotany, plant distribution and conservation perspective[J]. Biodiversity and Conservation, 2012, 21 (4): 1115-1126.
- [27] 刘秉儒. 生物多样性的海拔分布格局研究及进展[J]. 生态环 境学报, 2021, 30(2): 438-444.
- [28] 兰斯安,宋 敏,曾馥平,等.木论喀斯特森林木本植物多样 性垂直格局[J].生态学报,2016,36(22):7374-7383.
- [29] ZHAO L S, HOU R. Human causes of soil loss in rural karst environments: a case study of Guizhou, China [J]. Scientific Reports, 2019, 9(1): 3225.
- [30] 万 军.贵州省喀斯特地区土地退化与生态重建研究进展[J].
 地球科学进展,2003,18(3):447-453.
- [31] 文 伟,杨焱冰,安明态,等.贵州佛顶山国家级自然保护区 重点保护植物优先序列研究[J].中国野生植物资源,2021, 40(7):84-89.
- [32] 王加国,李晓芳,安明态,等. 雷公山濒危植物台湾杉群落主 要乔木树种种间联结性研究[J]. 西北林学院学报, 2015, 30
 (4):78-83.
- [33] 林泽信,李 茂,李 鹤,等.贵州印江洋溪自然保护区伯乐 树群落研究[J].种子,2018,37(11):59-63.
- [34] 叶 超,刘 锋,安明态,等.贵州野生兰科植物就地保护现状及保护空缺分析[J].广西植物,2022,42(2):240-246.
 (责任编辑:张明霞)

(上接第82页 Continued from page 82)

- [48] LIANG B, LEHMANN J, SOLOMON D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal, 2006, 70: 1173-1719.
- [49] 来张汇,吴山,李 涵,等.不同热解温度的秸秆源生物炭 对 Cd(Ⅱ)吸附机理[J].南昌大学学报(理科版),2022,46 (4):446-453.
- [50] WARNOCK D D, LEHMANN J, KUYPER T W, et al. Mycorrhizal responses to biochar in soil-concepts and mechanisms [J]. Plant and Soil, 2007, 300: 9-20.
- [51] GOROVTSOV A V, MINKINA T M, MANDZHIEVA S S, et al. The mechanisms of biochar interactions with microorganisms in soil
 [J]. Environmental Geochemistry and Health, 2020, 42: 2495– 2518.
- [52] 曹茜斐,谢军祥,常尧枫,等.生物质炭对氮转化过程及其功

能微生物影响研究进展[J]. 江苏农业学报, 2022, 38(2): 558-566.

- [53] FARRELL M, KUHN T K, MACDONALD L M, et al. Microbial utilisation of biochar-derived carbon [J]. Science of the Total Environment, 2013, 465: 288-297.
- [54] GRABER E R, HAREL Y M, KOLTON M, et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media [J]. Plant and Soil, 2010, 337: 481-496.
- [55] NAN H Y, YANG F, ZHAO L, et al. Interaction of inherent minerals with carbon during biomass pyrolysis weakens biochar carbon sequestration potential [J]. Ace Sustainable Chemistry and Engineering, 2019, 7: 1591–1599.

(责任编辑:张明霞)