SWEET 蛋白在植物生长发育中的功能作用研究进展

张计育,王 刚,王 涛,贾展慧,宣继萍^①

〔江苏省中国科学院植物研究所(南京中山植物园)江苏省植物资源研究与利用重点实验室,江苏南京 210014〕

摘要:光合作用同化物分配供给是果实和种子发育的主要限制因子,增加蔗糖分配转运到果实和种子是增产优质的潜在策略。SWEET(sugar will eventually be exported transporter)是近年来被鉴定较多的一类糖转运蛋白,该蛋白质通过从源叶运输营养物质调控库组织发育,参与植物生长发育以及生物和非生物胁迫反应。SWEET蛋白定位于膜结构,属于 MtN3 家族,通常包含 7 个跨膜结构域,其中包含 2 个 MtN3/saliva 结构域。随着染色体加倍、片段复制和串联复制等,SWEET 基因在物种中得到扩张。SWEET4 和 SWEET39 基因是作物驯化改良过程中选择的关键基因;SWEET9 蛋白是蜜腺特异性糖转运蛋白,参与植物蜜腺的进化;SWEET16 和 SWEET17 蛋白参与植物根系生长发育;SWEET11 和 SWEET15 蛋白参与植物种子胚乳填充。本文系统综述了 SWEET 蛋白的结构、数量、分类、亚细胞定位、成员扩张与进化,分析了 SWEET 蛋白在叶、茎、根系发育,花药发育,花蜜分泌,种子填充和果实发育等植物生长发育中的功能作用,强调了 SWEET 蛋白在作物改良中的应用,说明增强源库强度对作物产量提高的可持续性具有重要意义。

关键词: SWEET 蛋白; 根系发育; 花药发育; 花蜜分泌; 种子填充

中图分类号: Q513⁺.2; Q591.2; Q946.3 文献标志码: A 文章编号: 1674-7895(2023)05-0001-15 DOI: 10.3969/j.issn.1674-7895.2023.05.01

Research progress on functional roles of SWEET proteins in plant growth and development ZHANG Jiyu, WANG Gang, WANG Tao, JIA Zhanhui, XUAN Jiping^① [Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China], J. Plant Resour. & Environ., 2023, **32**(5): 1–15

Abstract: The distribution and supply of photosynthetic assimilation products is a major limiting factor of fruit and seed development, and increasing sucrose distribution and transport to fruits and seeds is a potential strategy for increasing yield and quality. SWEET (sugar will eventually be exported transporter) is a type of sugar transporters which have been identified more in recent years, and these proteins regulate sink organ development via transporting nutrients from source leaves and participate in plant growth and development and biotic and abiotic stress response. SWEET proteins are located in membrane structure, belong to MtN3 family, and usually contain seven transmembrane domains, including two MtN3/saliva domains. With chromosome doubling, segmental duplication, tandem duplication, etc., SWEET genes have been expanded in species. *SWEET4* and *SWEET39* genes are the key genes selected in the domestication and improvement process of crops. SWEET16 and SWEET17 proteins are involved in plant root growth and development. SWEET11 and SWEET15 proteins are involved in plant seed endosperm filling. This paper systematically reviews the structure, number, classification, subcellular localization, and member expansion and evolution of SWEET proteins, analyses functional roles of SWEET proteins in plant growth and development including leaf, stem, and root development, anther development, nectar

引用格式:张计育,王 刚,王 涛,等.SWEET 蛋白在植物生长发育中的功能作用研究进展[J].植物资源与环境学报,2023,32(5):1-15.

收稿日期: 2023-05-04

基金项目: 江苏省农业科技自主创新项目[2021(cx)3046]; 江苏省林业科技创新与推广项目(LYKJ[2020]04)

作者简介:张计育(1982—),男,山西沁县人,博士,副研究员,主要从事薄壳山核桃种质资源与分子生物学方面的研究。

^①通信作者 E-mail: xuanjiping@ cnbg.net

secretion, seed filling, and fruit development, highlights the application of SWEET proteins in crop improvement, and elucidates the importance of increasing sink-source intensity for the sustainability of crop yield increase.

Key words: SWEET protein; root development; anther development; nectar secretion; seed filling

糖作为高等植物能量储备和其他有机化合物的 组成部分,是植物生长发育以及生物和非生物胁迫反 应相关的信号分子^[1]。明确糖的合成和消耗以及细 胞间和细胞内糖的转运机制是植物性状改良的关 键^[2]。光合产物从源叶到库组织的运输是植物源库 平衡的一个基本特征,需要通过共质体和质外体的韧 皮部负载机制完成。蔗糖是许多植物光合作用的主 要产物,蔗糖在细胞间转运是由质外体途径(由质膜 转运蛋白从一个细胞输出,随后由另一个转运蛋白输 人到相邻细胞)或通过胞间连丝的共质体途径转 运^[3]。长距离运输蔗糖从源叶到各种库组织可促进 新叶、根、花、果实和种子等器官的发育,因此提高蔗 糖从源叶到库组织的运输效率,尤其是果实和种子中 的卸载效率是提高作物产量和品质的关键^[4-5]。种 子中糖的输入直接决定种子大小,种子填充与作物产 量密切相关,研究作物种子填充机制对品种改良至关 重要。

糖转运蛋白是植物体运输途径的关键组成部分, 包括3种关键类型,分别为单糖转运蛋白 (monosaccharide transporter, MST)、蔗糖转运蛋白 (sucrose transporter, SUT)和SWEET(sugar will eventually be exported transporter)^[6-7]。在玉米(Zea mays Linn.)、拟南芥[Arabidopsis thaliana (Linn.) Heynh.]和马铃薯(Solanum tuberosum Linn.)等植物 中,通过质外体韧皮部装载途径,蔗糖利用SWEET 蛋白从韧皮部薄壁组织细胞输出细胞质,进入质外 体/细胞壁空间,通过SUT蛋白将蔗糖装载进入筛分 子-伴侣细胞复合体,转运到库组织^[8]。SWEET和 SUT蛋白在库组织中同样具有卸载功能^[9-10]。

SWEET 蛋白是近年来被鉴别较多的糖转运蛋白 之一,存在于所有的生物体中。SWEET 蛋白在植物 生长发育过程中发挥不同的生理作用,例如:控制植 物生长和防御,促进蔗糖从源到库的长距离转运,参 与营养生长、繁殖、衰老、生物和非生物应激反 应^[8,11-14]。对植物 SWEET 基因进行遗传转化可以改 良光合产物的分配,增加产量,增强对病原菌的抗性。 本文系统综述了 SWEET 蛋白在植物生长发育过程 中的功能作用机制。

1 SWEET 蛋白的结构、数量和分类

随着基因组测序技术的迅速发展,越来越多植物 的参考基因组得以公布,与此同时,物种中的 SWEET 蛋白得到快速鉴定。SWEET 蛋白在植物、动物和微 生物中广泛存在,为定位于膜结构的糖转运蛋白,属 于 MtN3 家族^[15]。SWEET 蛋白通常包含 7 个跨膜结 构域(TMD),其中包含2个 MtN3/saliva 结构域 (PFAM 代码 PF0383)。植物中的 SWEET 蛋白可分 为4类(表1),其中,拟南芥有17个SWEET蛋白,第 I 类含有 3 个 SWEET 蛋白(SWEET1、SWEET2 和 SWEET3), 第Ⅱ类含有5个SWEET蛋白(SWEET4、 SWEET5、SWEET6、SWEET7 和 SWEET8), 第Ⅳ类含 有2个SWEET蛋白(SWEET16和SWEET17),这 3 类主要转运己糖; 第Ⅲ类含有 7 个 SWEET 蛋白 (SWEET9, SWEET10, SWEET11, SWEET12, SWEET13、SWEET14 和 SWEET15), 主要转运蔗 糖^[11,16]。不同 SWEET 蛋白位于不同的细胞区室, SWEET1、SWEET8、SWEET9、SWEET11、SWEET12 和 SWEET15 主要位于细胞质膜, SWEET2、SWEET16 和 SWEET17 主要位于液泡膜^[16]。其他植物的 SWEET 蛋白根据拟南芥进行分类和命名。同一类 SWEET 蛋白在不同植物中存在差异,如香蕉(Musa acuminata Colla) SWEET 蛋白第 I 类中缺少 SWEET3,第Ⅱ类中缺少 SWEET5 和 SWEET8,第Ⅲ类 中仅含有 SWEET14,且 SWEET14 有 10 个同源蛋白, 分别为 SWEET14a、SWEET14b、SWEET14c、 SWEET14d、 SWEET14e、 SWEET14f、 SWEET14g、 SWEET14h、SWEET14i 和 SWEET14i^[17]。

2 SWEET 蛋白家族成员扩张与进化

2.1 SWEET 蛋白家族成员扩张

多倍体在植物进化过程中起着至关重要的作用, 许多被子植物都经历过1次或多次多倍体化,从而导

表1	不	司植物 SWEET 蛋白的数量和分类	
Table	1	Number and classification of SWEET proteins in different plants	

植物	数量	分类 Classification				参考文献
Plant	Number	Ι	П	Ш	IV	Reference
拟南芥 Arabidopsis thaliana	17	SWEET1,SWEET2, SWEET3	SWEET4, SWEET5, SWEET6, SWEET7, SWEET8	SWEET9, SWEET10, SWEET11, SWEET12, SWEET13, SWEET14, SWEET15	SWEET16,SWEET17	[4]
香蕉 Musa acuminata	25	SWEET1a, SWEET1b, SWEET2a, SWEET2b	SWEET4a, SWEET4b, SWEET4c, SWEET4d, SWEET4e, SWEET6, SWEET7a, SWEET7b	SWEET14a, SWEET14b, SWEET14c, SWEET14d, SWEET14e, SWEET14f, SWEET14g, SWEET14h, SWEET14i, SWEET14j	SWEET16a, SWEET16b, SWEET17	[17]
荔枝 Litchi chinensis	16	SWEET1,SWEET2a, SWEET2b,SWEET3a, SWEET3b	SWEET4, SWEET5, SWEET6, SWEET8	SWEET9a, SWEET9b, SWEET10, SWEET11, SWEET12, SWEET15	SWEET17	[18]
马铃薯 Solanum tuberosum	33	SWEET1a, SWEET1b, SWEET1c, SWEET1d, SWEET1e, SWEET1f, SWEET1g, SWEET1h, SWEET1i, SWEET1j, SWEET2a, SWEET2b, SWEET2c, SWEET3	SWEET4, SWEET5, SWEET6, SWEET7a, SWEET7b	SWEET10a, SWEET10b, SWEET10c, SWEET10d, SWEET11, SWEET12a, SWEET12b, SWEET12c, SWEET12d, SWEET12e	SWEET16a, SWEET16b, SWEET16c, SWEET17	[19]
大麦 Hordeum vulgare	23	SWEET1a,SWEET1b, SWEET2a,SWEET2b, SWEET3	SWEET4,SWEET5, SWEET6a,SWEET6b, SWEET7a,SWEET7b, SWEET7c	SWEET11a,SWEET11b, SWEET12,SWEET13a, SWEET13b,SWEET14a, SWEET14b,SWEET15a, SWEET15b,SWEET15c	SWEET16	[20]
水稻 Oryza sativa	23	SWEET1a, SWEET1b, SWEET2a, SWEET2b, SWEET2c, SWEET3a, SWEET3b,	SWEET4, SWEET5, SWEET6a, SWEET6b, SWEET7a, SWEET7b, SWEET7c, SWEET7d, SWEET7e	SWEET11a,SWEET11b, SWEET12,SWEET13, SWEET14,SWEET15	SWEET16	[21-22]
苹果 Malus pumila	25	SWEET1,SWEET2a, SWEET2b,SWEET2c, SWEET2d,SWEET2e, SWEET2f,SWEET2g, SWEET2b,SWEET2i	SWEET5a,SWEET5b, SWEET7a,SWEET7b, SWEET8	SWEET9a, SWEET9b, SWEET10a, SWEET10b, SWEET11, SWEET12a, SWEET12b, SWEET15a, SWEET15b	SWEET17	[23]
番茄 Solanum lycopersicum	29	NEC1,SWEET1a, SWEET1b,SWEET1c, SWEET1d,SWEET1e, SWEET1f,SWEET2a, SWEET2b,SWEET3	SWEET5a, SWEET5b, SWEET6, SWEET7a, SWEET7b	SWEET10a, SWEET10b, SWEET10c, SWEET11a, SWEET11b, SWEET11c, SWEET11d, SWEET12a, SWEET12b, SWEET12c, SWEET12d, SWEET14	SWEET16,SWEET17	[24]
葡萄 Vitis vinifera	17	SWEET1 , SWEET2a , SWEET2b , SWEET3	SWEET4, SWEET5a, SWEET5b, SWEET7	SWEET9,SWEET10, SWEET11,SWEET12, SWEET15	SWEET17a, SWEET17b, SWEET17c, SWEET17d	[25]
茶树 Camellia sinensis	13	SWEET1a,SWEET1b, SWEET2a,SWEET2b, SWEET2c,SWEET3	SWEET5, SWEET7	SWEET9a, SWEET9b, SWEET15	SWEET16, SWEET17	[26]
玉米 Zea mays	24	SWEET1a, SWEET1b, SWEET2, SWEET3a, SWEET3b	SWEET4a,SWEET4b, SWEET4c,SWEET6a, SWEET6b	SWEET11a, SWEET11b, SWEET12a, SWEET12b, SWEET13a, SWEET13b, SWEET13c, SWEET14a, SWEET14b, SWEET15a, SWEET15b	SWEET16,SWEET17a, SWEET17b	[27]
杨树 Populus sp.	27	SWEET1a, SWEET1b, SWEET1c, SWEET1d, SWEET2a, SWEET2b, SWEET2c, SWEET3a, SWEET3b, SWEET3c	SWEET4,SWEET5, SWEET7	SWEET9, SWEET10a, SWEET10b, SWEET10c, SWEET10d, SWEET11, SWEET15a, SWEET15b	SWEET16a, SWEET16b, SWEET17a, SWEET17b, SWEET17c, SWEET17d	[28]
枣 Ziziphus jujuba	19	SWEET1, SWEET2.1, SWEET2.2, SWEET3	SWEET4.1,SWEET4.2, SWEET4.3,SWEET4.4, SWEET5,SWEET7	SWEET10.1, SWEET10.2, SWEET10.3, SWEET10.4, SWEET11, SWEET13	SWEET16, SWEET17.1, SWEET17.2	[29]

致基因家族成员扩张^[30]。植物平均含有 20 个 SWEET 基因, 而大豆 (Glycine max Linn.) 中含有 52 个,大豆至少经历了3次全基因组复制,约75%的基 因存在多个拷贝^[30-31], GmSWEET4、GmSWEET5、 GmSWEET6、GmSWEET7 和 GmSWEET8 组成的 SWEET 基因簇与 GmSWEET13、GmSWEET14、 GmSWEET15、GmSWEET16 和 GmSWEET17 组成的 SWEET 基因簇在 4 号和 6 号染色体之间串联重复, 5号和8号染色体以及8号和18号染色体之间也存 在类似串联重复簇^[32]。毛果杨(Populus trichocarpa Torr. et A. Gray ex Hook.)同样经历了至少3次全基 因组复制事件,随后是片段复制和串联复制事件^[33]。 杨树(Populus sp.)SWEET 基因经历了 11 次复制事 件,包括6个串联复制事件和5个全基因组复制事 件,第Ⅰ、第Ⅲ和第Ⅳ类 SWEET 基因存在片段重复和 串联重复^[28]。大麦(Hordeum vulgare Linn.)中有2对 片段重复(HvSWEET1a/b 和 HvSWEET11a/b)和2对 串联重复(HvSWEET6a/b 和 HvSWEET15b/c)^[20]。玉 米含有 5 对片段重复和 1 对串联重复, 粱 [Setaria italica (Linn.) Beauv.]、水稻(Oryza sativa Linn.)和高 粱[Sorghum bicolor (Linn.) Moench]分别含有7、4和 4对片段重复[27]。异源六倍体小麦含有 105 个 SWEET 基因成员,这可能与巨大的基因组、高度重复 的基因组序列以及包含3个密切相关的亚基因组有 关^[34]。Patil 等^[32]的研究结果显示:25 种植物基因组 的 411 个 SWEET 基因中有 56 个串联基因和 95 个片 段重复,且其中72个 SWEET 基因同时存在串联和片 段重复。这些研究结果表明:随着染色体加倍、片段 复制和串联复制等, SWEET 基因在物种中得到了 扩张。

2.2 SWEET 蛋白家族成员进化

2.2.1 参与物种驯化改良 玉米基因组含有3个 SWEET4 同源基因,而水稻基因组中仅有1个 SWEET4 基因,推测玉米和水稻的 SWEET4 基因是从 二者共同祖先中的某一个基因进化而来^[35]。玉米 ZmSWEET4c 和水稻 OsSWEET4 蛋白转运己糖,促进 胚乳发育和种子填充,SWEET4 蛋白是玉米和水稻驯 化过程中选择的目标位点^[35-36]。大豆 GmSWEET39 基因组区域含有3个明显变异,其中位于第6个外显 子上的 CC 插入缺失是导致种子中油脂和蛋白质含 量变化的主要等位基因,CC 缺失导致 GmSWEET39 基因少了19个氨基酸^[37]。大豆 GmSWEET39 基因中 CC存在(CC+)品种种子的油脂含量低而蛋白质含量高,而 GmSWEET39 基因中CC缺失(CC-)品种种子的油脂含量高而蛋白质含量低^[37]。由此可见,大豆GmSWEET39 基因的自然变异和选择影响其种子中油脂和蛋白质含量。在大豆改良和驯化过程中,GmSWEET39(CC-)同源基因的选择可用于培育高油品种,GmSWEET39(CC+)同源基因的选择可用于培育高蛋白品种^[38]。这些结果说明SWEET 蛋白在植物引种驯化改良过程中起着积极作用。

2.2.2 参与植物蜜腺进化 花蜜是介导植物与动物 之间相互作用的一种主要奖励媒介,蜜腺经历了多次 进化^[39]。茄目(Solanales)植物有雌蕊蜜腺,而十字 花目(Cruciales)植物通常有雄蕊外蜜腺和雄蕊内蜜 腺。推测 SWEET9 蛋白在核心真双子叶植物进化的 早期出现,或者是在菊分支(Asterids)和蔷薇分支 (Rosids)中被独立用于雌蕊以及雄蕊内和雄蕊外的 蜜腺功能^[40]。系统进化研究结果表明:SWEET9 蛋 白与核心真双子叶植物进化吻合,大约出现在1.2亿 年前^[41]。SWEET9蛋白是拟南芥(雄蕊外蜜腺)、蔓 菁(Brassica rapa Linn.)(雄蕊外蜜腺)和渐狭叶烟草 (Nicotiana attenuate Torr. ex S. Watson)(雌蕊蜜腺) 3种双子叶植物蜜腺特异性糖转运蛋白^[40]。水稻、 玉米和大麦的花是风媒花,无蜜腺,缺少 SWEET9 蛋 白^[40]。毛果杨的花也是风媒花,缺少功能花内蜜腺, 具有花外蜜腺,含 SWEET9 和 SWEET10 同源基因,且 毛果杨花外蜜腺富含己糖^[42],这些花外蜜腺具有吸 引蚂蚁抵抗其他昆虫的作用^[43]。招募 SWEET9 蛋白 用于蔗糖输出是植物的一个"关键创新",有助于花 蜜分泌的进化,以奖励传粉者。由此可见,SWEET9 蜜腺特异性糖转运蛋白参与植物蜜腺进化。

2.2.3 参与赤霉素(GA)转运活性的进化 在植物进化过程中,SWEET 蛋白的 GA 转运活性形成是独立和偶然的。水稻 OsSWEET3a 蛋白和高粱 SbSWEET3a 蛋白从葡萄糖转运蛋白进化而来,而拟南芥 AtSWEET13 和 AtSWEET14 蛋白从蔗糖转运蛋白进化而来,这些蛋白质在进化过程中被赋予 GA 转运活性,参与植物生长发育过程,ossweet3a 突变体植株的种子发芽和茎早期生长受影响,atsweet13 和 atsweet14 突变体植株的种子发育、秧苗早期发育和花药发育受影响^[44-45]。外源 GA₁和 GA₂₀处理可以部分恢复 ossweet3a 敲除突变体和过量表达植株的表型^[45]。

3 SWEET 蛋白在营养器官中的功能作用

3.1 在叶片中的功能作用

在番茄(Solanum lycopersicum Linn.)幼叶(库) 中,葡萄糖转运蛋白 SISWEET1a 在卸载的叶脉组织 中强烈表达,slsweet1a 突变体植株中,葡萄糖和果糖 在幼叶中显著减少,在成熟叶片中显著增加,说明 SISWEET1a 蛋白在幼叶(库)组织从质外体摄取葡萄 糖到薄壁组织中起重要作用^[46]。

蔗糖在成熟叶片叶肉细胞中合成,SWEET 蛋白 介导蔗糖流入质外体,是质外体韧皮部装载的关键步 骤^[15]。拟南芥蔗糖转运蛋白 AtSWEET11 和 AtSWEET12 在叶片韧皮部薄壁组织、近端的伴侣细 胞和筛分子中高表达,atsweet11/12 双突变体植株韧 皮部装载蔗糖存在缺陷,限制蔗糖向库组织中转运, 叶片中淀粉和可溶性糖大量积累,导致植株矮化^[15]。 高粱 SbSWEET13a、SbSWEET13b 和 SbSWEET13c 基 因在叶片和茎中表达量高,这些基因的表达模式与茎 中的蔗糖积累相对应^[47]。玉米中 ZmSWEET13a、 ZmSWEET13b 和 ZmSWEET13c 基因在叶鞘和叶脉中 表达,zmsweet13a/13b/13c 三突变体植株发育严重不 良,韧皮部装载受损,光合活性降低,叶片中积累较高 水平的可溶性糖和淀粉^[48]。马铃薯 StSWEET11 蛋 白是韧皮部装载蔗糖的转运中枢,stsweet11 突变体植 株产量减少,叶片中淀粉和蔗糖积累增加^[49]。这些 结果表明 SWEET 蛋白对源叶中蔗糖的装载过程起 着重要的作用。

在拟南芥叶片衰老过程中,AtSWEET15 基因表达显著上调,该基因过量表达会加快叶片衰老,表明AtSWEET15蛋白在糖再分配中的作用^[50]。白梨(Pyrus bretschneideri Rehd.)PbSWEET4 基因是AtSWEET15基因的同源基因,该基因在野草莓(Fragaria vesca Linn.)中过量表达会降低叶片中糖和叶绿素含量,加速叶片衰老^[51]。

3.2 在茎中的功能作用

水稻 OsSWEET3a 和 OsSWEET3b 蛋白位于细胞 质膜,在幼苗发育早期,转运葡萄糖和赤霉素(GA)。 OsSWEET3a 基因在幼苗期茎基部(冠状根到盾片上 表皮,包括盾片和中胚轴)的表达量最高^[45]。与野生 型植株相比,OsSWEET3a 基因过量表达植株及其敲 除突变体 T₀代植株在表型上均没有明显差异,T₁代 植株表现出发芽延迟和生长延缓^[45]。在水稻幼苗发 育早期, OsSWEET3a和 OsGA2Oox1 基因共表达于茎 基部的维管束, 说明 OsSWEET3a蛋白在幼苗茎基部 的维管束中有表达, 参与 GA₂₀和葡萄糖向幼叶转运, 在幼叶中 GA₂₀通过 OsGA3ox2蛋白转换成有生物活 性的 GA₁, 促进幼苗茎的早期发育^[45]。GA₂₀与葡萄 糖从胚乳通过中胚轴维管束长距离运输到叶原基, 有 利于水稻幼苗的旺盛生长^[45]。

SWEET 蛋白通过质外体途径将糖从韧皮部复合 物卸载到库组织。马铃薯 StSWEET11 蛋白在其匍 匐茎和块茎库组织的韧皮部伴生细胞中表达,将蔗 糖从库组织向质外体空间转运^[52]。因此,在 35S:StSWEET11 植株茎质外体空间中蔗糖的含量高 于 StSWEET11 RNAi 植株^[49]。马铃薯 FT (flowering locus T)蛋白 StSP6A 是块茎形成必需的蛋白质,在块 茎形成过程中,该蛋白质在匍匐茎根尖和亚根尖分生 组织韧皮部表达,并与 StSWEET11 蛋白相互作用,阻 断蔗糖向质外体渗漏,使块茎中的蔗糖卸载从质外体 形式转变为共质体形式,预示块茎形成^[52]。这些结 果表明 SWEET 蛋白与其他蛋白质精密协调,调控源 库关系^[49]。

3.3 在根系中的功能作用

根系生长和形态建成受发育和各种环境因子的 影响。糖是调节根系模块建立的信号分子^[53],影响 根系的生长发育^[54]。液泡是植物细胞中最大的细胞 器,主要调控糖动态贮藏过程^[55]。蔗糖从韧皮部卸 载后,水解成葡萄糖和果糖,液泡 SWEET 蛋白将果 糖从细胞质转运到液泡,果糖是液泡中糖储藏的主要 形式^[56],且绝大多数果糖储藏在液泡中^[57],储藏在 根液泡中的果糖可能是根细胞生长的重要能量来源, 在根伸长区促进新形成细胞的迅速扩张并加速细胞 器的成熟^[58]。葡萄糖和蔗糖促进初生根的生长,葡 萄糖、果糖和蔗糖显著诱导一级侧根的发育和生长, 其中果糖尤为显著^[53]。但细胞质中高水平的果糖抑 制根系生长和幼苗发育^[53,59]。

SWEET 蛋白参与根伸长区生长发育。SWEET17 蛋白在成熟叶片中的表达量相对较低,而在根系中的 表达量较高,SWEET17 蛋白主要富集在根成熟区的 皮层细胞。外源果糖和暗处理均可诱导根伸长区 SWEET17 蛋白的表达^[56]。果糖显著抑制初生根的 生长,与野生型植株相比,质量体积分数 1%和 2%外 源果糖处理显著抑制 sweet17 突变体植株初生根生 长,sweet17 突变体植株表现出对果糖的敏感性^[56],限制果糖转运到液泡中,导致细胞质中果糖浓度增加^[59]。而过量表达 SWEET17 基因增强了植株对果糖的耐性,说明 SWEET17 蛋白介导液泡中果糖的摄入,改变 SWEET17 蛋白的表达影响细胞内果糖的分配,进而影响根系对高浓度果糖的敏感性^[56]。低温胁迫处理 24 h诱导野生型植株液泡中果糖含量增加 2~10 倍^[60]。与野生型植株相比较,过量表达 SWEET17 基因植株叶片中果糖含量降低 80%,其他糖含量没有明显变化。说明 SWEET17 蛋白参与液泡中果糖的输出^[56],位于根液泡膜的 SWEET17 蛋白 制力型液泡膜摄取细胞质中多余的果糖,也可以释放存储在液泡中的果糖。SWEET17 蛋白在促进果糖通过根液泡膜的双向转运中发挥关键作用,以响应代谢需求和维持细胞质中果糖动态平衡。

SWEET 蛋白参与侧根生长发育。外源果糖处理 显著诱导侧根生长和发育所需基因 ARF7、ARF19、 LBD16、LBD18 和 LBD29 的表达^[53]。Valifard 等^[53] 的研究结果表明:SWEET17 蛋白在侧根原基处强烈 富集,在侧根萌发的后期,该蛋白质在微管系统中富 集,随后在侧根根尖及其周围细胞中表达,且在侧根 分生区微管中表达。这些结果表明 SWEET17 蛋白 主要在侧根形成的区域表达^[53]。sweet17 突变体植 株叶片中含有高水平的果糖[61]。在干旱胁迫条件 下,sweet17 突变体植株和野生型植株根系中的葡萄 糖、果糖和蔗糖含量显著升高,但 sweet 17 突变体植株 根系中果糖含量始终高于野生型植株。与野生型植 株相比, sweet 17 突变体植株侧根形成受阻, 侧根长度 缩短,侧根密度降低,同时,侧根生长和发育所需基因 ARF7、ARF19、LBD16、LBD18 和 LBD29 的表达量显著 降低。外源果糖处理诱导根系中 SWEET17 基因的表 达,促进细胞质中果糖进入液泡,从而减弱细胞质中 果糖的毒害作用^[53]。这些结果表明 sweet 17 突变体 植株细胞质中富集过多的果糖对植株根系的生长和 发育具有毒害作用。干旱胁迫诱导 SWEET17 基因的 表达,sweet17 突变体植株对干旱的耐性降低。在干 旱胁迫下,sweet17 敲除突变体植株侧根生长减慢,侧 根发育相关转录因子表达减少,抗旱性下降^[53]。

SWEET16 是 SWEET17 的同源基因, Klemens 等^[62]研究认为 SWEET16 基因在叶片和花柄的木质 部薄壁组织中表达水平极低, 而在根皮层细胞中强烈 表达, 主要在根部发挥作用。SWEET16 和 SWEET17

是仅有的 2 个在根中高表达的 SWEET 蛋白家族成员,说明第 IV 类 SWEET 蛋白在根中具有特定的功能。sweet16 和 sweet17 突变体植株液泡果糖摄取活性显著降低,而在低温胁迫条件下,过量表达SWEET16 蛋白同样减少果糖的积累^[62]。与 sweet16 突变体植株相比,sweet16/17 双突变体植株根对过量果糖的耐性没有进一步降低^[56]。这些结果表明SWEET16 和 SWEET17 蛋白在根细胞的液泡膜上交换糖的途径可能不同。鉴于 SWEET17 基因在根中的表达量明显高于 SWEET16 基因,SWEET17 很可能是根液泡膜上主要的果糖转运蛋白。液泡膜上含有多种糖转运蛋白,介导不同类型糖的输入和输出^[2]。与其他液泡膜糖转运蛋白相比,SWEET17 蛋白仅转运果糖^[56,61]。

葡萄糖、果糖和蔗糖渗透胁迫以及低温处理显著 降低 SWEET16 基因的表达量,缺氮处理降低该基因 的表达量,但是高氮处理增加该基因的表达量^[62]。 高浓度糖抑制植物发育,尤其是在种子发芽的早期阶 段^[63]。在高糖条件下,转基因植株过量表达 SWEET16 基因可以提高种子的发芽效率,其原因是 位于液泡膜上的 SWEET16 蛋白具有转运葡萄糖、果 糖和蔗糖的功能,同时,过量表达的 SWEET16 蛋白 促进了细胞质中葡萄糖、果糖和蔗糖进入液泡,从而 减少了细胞质中过量糖的毒害作用^[62]。在氮充足或 高氮利用效率的情况下,过量表达 SWEET16 基因将 液泡中的糖转移到细胞质中,SWEET16 蛋白磷酸化 后作为还原态氮的碳受体,因此,过量表达 SWEET16 基因降低了植株中葡萄糖和果糖的含量,其中在高氮 条件下果糖含量显著降低^[62]。在正常生长和高氮条 件下,过量表达 AtSWEET16 基因的拟南芥茎和根的 生长量显著增加,氮利用效率明显提高^[62]。

除了 SWEET16 和 SWEET17 蛋白外, SWEET2 蛋白也参与了根系的生长发育。SWEET2 蛋白在根中表达,特别是根冠、根尖、根毛和成熟区表皮。sweet2 插入突变体植株对高浓度葡萄糖的敏感性增加,叶片中葡萄糖含量降低,根中葡萄糖流出量较野生型植株提高了 15%~25%^[64-65]。在过量葡萄糖条件下, SWEET2 蛋白将葡萄糖运输到液泡短暂存储。因此, SWEET2 蛋白对高浓度葡萄糖有缓解作用,阻止糖从根组织流失,具有平衡碳流失到根际的功能^[64]。*Pythium* 侵染诱导 SWEET2 基因的表达, sweet2 突变体对 Pythium 的敏感性增加,根系液泡膜上表达的己

糖转运蛋白 SWEET2 调控糖分泌^[66],降低了隔离在 液泡中葡萄糖可利用性,限制糖流失到根际中,增强 了对 Pythium 的抗性^[64]。

蒺藜苜蓿(Medicago truncatula Gaertn.)的 MtSWEET11蛋白是根瘤菌特异的蔗糖质膜转运蛋 白,在根瘤菌表皮(包括分生组织和侵染区域)和维 管系统中表达,且在根瘤(包括远端侵入区和分生组 织)中表达量最大,另外,时空表达结果表明 MtSWEET11蛋白在根瘤菌发育的整个时期以及成熟 根瘤菌共生氮固定时期均起作用^[67-68]。未侵染根瘤 菌植株的MtSWEET11蛋白位于质膜,而侵染后位于 感染线和共生膜上,mtsweet11突变体植株的固氮功 能没有受到影响,可能是其他糖转运蛋白填补了这一 功能^[67]。

4 SWEET 蛋白在生殖器官中的功能作用

4.1 在花粉中的功能作用

花粉发育是产生雄配子体的必要条件,雄配子体 对植物有性生殖和产量至关重要^[69]。在开花植物 中,花粉细胞在花药中发育,花药通过雄蕊中的花丝 附着在花托上。在花形成过程中,花药发育表现出较 高的养分消耗强度^[70]。由于绿色萼片和幼嫩花瓣只 能提供有限的光合作用同化物,花粉生长在很大程度 上依赖于碳源的输入,主要是来自源叶的蔗糖^[71]。

根据形态特征,拟南芥花药发育可以分为14个 阶段^[72],AtSWEET8 基因在花中的表达量最高^[73-74]。 AtSWEET8 基因在阶段 4(四裂花药形成)表达;在减 数分裂过程中,绒毛层和小孢子细胞中 AtSWEET8 基 因的表达量显著增加;阶段 7(单倍体小孢子四分体 形成)AtSWEET8 基因的表达量下降,阶段 12(绒毛层 完全降解,花粉粒形成)时,该蛋白质在花粉粒中表 达^[73]。atsweet8 突变体中,小孢子质膜形成受到影 响,在四分体阶段,由于孢粉素沉积异常,小孢子的外 壁形成受到严重受阻,并且在减数分裂后的发育过程 中,小孢子大多破裂和死亡,导致雄性不育^[73]。这些 结果说明 AtSWEET8 蛋白在花药发育早期阶段维持 小孢子质膜的完整性,或者调控小孢子质膜的适时变 化以满足初生外壁形成^[73]。

拟南芥 atsweet13/14 双突变体植株花粉活力低 且花粉萌发率低,导致花粉败育^[44,75]。由此可见 atsweet13/14 双突变体植株的育性降低是由花粉缺陷

导致。花粉从花药壁的体细胞层分离出来,花粉发育 需要花药小室提供营养。花药壁有4层,分别为表 皮、药室内壁、中层和绒毡层,其中,表皮在花药发育 过程中起保护作用;药室内壁贮藏淀粉,与花药开裂 有关,释放花粉:中层在花药发育后期消失:绒毡层促 进营养和水分的流动,促进花粉粒的发育,分泌花粉 形成的外壁成分,后期绒毡层退化解体^[76]。 AtSWEET13 和 AtSWEET14 基因仅在花药发育后期的 花药壁(包括内表皮和外表皮)中表达,中层和绒毡 层已完全解体。拟南芥花药发育后期, atsweet 13/14 双突变体植株花药中积累过多的淀粉,且主要集中在 花药的外表皮和内表皮细胞中^[75]。atsweet13/14 双 突变体植株花粉粒的长度和宽度显著减小,其花粉粒 中葡萄糖、果糖和蔗糖的含量也显著低于野生型植 株,花药裂开延迟^[75]。这些结果表明 atsweet 13/14 双 突变体植株不能将蔗糖从内皮层运输到花粉粒,无法 为花粉发育提供充足的糖分,导致花粉粒发育不良, 这是花粉败育的主要原因[77]。油脂是成熟花粉粒中 碳储藏的另一种主要形式^[78]。糖是花粉粒油脂生物 合成的主要来源,油脂积累缺陷影响花粉活力和授粉 受精^[79]。atsweet13/14 双突变体植株花粉中脂肪酸 含量与野生型植株没有明显差异[75]。虽然拟南芥 atsweet13/14 双突变体植株花粉活性显著降低,但是 仍有少量活性,原因可能是其他 SWEET 蛋白的表 达^[6]或者是花药早期发育阶段生物合成的淀粉降 解^[44]。蔗糖和赤霉素(GA)都被证明是 AtSWEET13 或 AtSWEET14 蛋白的底物^[15,44], AtSWEET13 和 AtSWEET14 蛋白介导的蔗糖转运对花粉活力和花粉 萌发至关重要^[75]。AtSWEET5 蛋白转运半乳糖,在 花粉发育的三细胞阶段开始表达,在成熟的花粉中表 达量最大,在花粉萌发前表达量快速下降。在外源半 乳糖处理条件下,过量表达AtSWEET5蛋白花粉的萌 发率显著下降,而 atsweet5 突变体植株花粉萌发无变 化,说明 AtSWEET5 蛋白在花粉萌发时期对半乳糖 敏感[80]。

已有研究结果表明: AtSWEET10、AtSWEET12、 AtSWEET13 和 AtSWEET14 蛋白能介导 GA 转运, OsSWEET3a、OsSWEET11a 和 OsSWEET12 蛋白具有 微弱的 GA 介导活性^[22,44-45]。然而,通过外源 GA₃处 理, atsweet13/14 双突变体植株的花药开裂得以部分 恢复^[44], ossweet3a 突变体植株的种子萌发和早期芽 发育缺陷可以恢复^[45],表明 AtSWEET13 和 AtSWEET14 蛋白在花药中介导 GA 转运。GA 在调 控花丝伸长和花药开裂中起重要作用^[81]。拟南芥 ga20ox1 和 ga20ox2 突变体表现出花丝伸长受损和开 裂延迟,但 ga20ox1 和 ga20ox2 突变体花粉具有活 性^[82],表明 GA 调控的花药开裂可能与花粉活力无 关。花药发育的不同阶段可能需要特定的 GA 转运 蛋白,AtSWEET13 和 AtSWEET14 蛋白转运的 GA 可 能与花药开裂有关。

番茄 SISWEET5b 基因在花中的表达量明显多于 其他 28 个 SISWEET 基因,并且该基因在营养器官中 表达量很低;SISWEET5b 基因主要在花发育后期的雄 蕊中明显表达,而此时小孢子逐渐形成,绒毡层细胞 降解,位于绒毡中的糖转移到小室,在小孢子成熟过 程中小室和花粉粒中的糖逐渐积累,在开花前达到最 高水平:SISWEET5b 基因在雄蕊中的特异性表达与花 粉细胞中的糖积累同时存在, RNAi 介导的 SISWEET5b 基因表达抑制导致无核花粉细胞萎缩、萌 发受损和种子产量降低^[83]。此外, slsweet5b 沉默突 变体的雄蕊中蔗糖含量显著降低,蔗糖酶活性增加, 表明碳供应减少,蔗糖平衡紊乱^[83]。在花粉成熟阶 段,小孢子和花粉细胞壁的形成需要大量的糖, SISWEET5b 基因在成熟花芽中明显表达,尤其是在花 药维管束和内细胞、离体小孢子(花粉粒)以及花柱 中,表明定位在质膜的 SISWEET5b 蛋白促进韧皮部 细胞的蔗糖卸载,一旦糖被转移到花药内层细胞, SISWEET5b 蛋白促进己糖被动输出到药室,药室中 大部分蔗糖被细胞壁转化酶转化为葡萄糖和果糖,药 室中高浓度单糖促使成熟的花粉粒通过 SISWEET5b 蛋白摄取己糖[83]。这些结果表明质膜蛋白 SISWEET5b 通过介导质外体的己糖进入韧皮部卸载 细胞和发育的花粉细胞支持番茄花粉的有丝分裂和 成熟^[83]。SISWEET5b蛋白在花柱中表达,可能与授 粉有关,授粉后花粉管快速生长,将精核输送到胚珠 进行受精,而花粉管生长所需的高能量依赖于周围组 织分泌的氨基酸和糖形式的营养物质的持续供 应^[84]。SISWEET5b 蛋白可能有助于糖从花柱细胞卸 载到传输道^[83],在传输道中糖的吸收是由蛋白质驱 动的 SUC/SUT 和己糖转运蛋白介导^[85]。

水稻 ossweet11(Os8N3) 突变体植株的花粉育性 降低,大多数花粉粒有缺陷,这可能与其缺乏淀粉有 关^[86]。OsSWEET11a 和 OsSWEET11b 基因在花药以 及内稃和外稃脉络中表达,且在雄蕊中没有重叠,在 小孢子和绒毛层没有表达,其中,OsSWEET11a 基因 在花丝(花药花梗)顶端表达;OsSWEET11b 基因在花 药脉中表达,且起始于 OsSWEET11a 基因表达的终 端,另外,OsSWEET11b 基因在花药维管束中也有表 达^[22]。因此, OsSWEET11a 蛋白可能在花药基区脉 管系统释放底物的过程中发挥作用,而 OsSWEET11b 蛋白可能在花药脉中发挥作用,另外,OsSWEET11b 蛋白在主根的中柱、侧根发生区域、叶脉和小穗分枝 中表达^[22]。值得注意的是,温室中生长的水稻 ossweet11a 敲除突变体植株未表现出明显的雄性生育 缺陷^[9], Wu 等^[22]认为 ossweet11a 和 ossweet11b 突变 体植株没有生殖缺陷。Os8N3 基因 3'端的 598 bp RNA 干扰导致水稻花粉育性降低,花粉粒中淀粉含 量降低^[86],可能是 RNA 干扰同时影响了 OsSWEET11a 和 OsSWEET11b 基因的功能^[22]。 ossweet11a/11b 双突变体植株由于雄配子体发育缺 陷,花粉缺陷不能产生单个可育种子,导致无生殖能 力^[22]。另外,ossweet11a/11b 双突变体植株花粉形态 异常,糖供给不足,淀粉含量显著低于野生型植株,因 此,OsSWEET11a和OsSWEET11b蛋白分别在花药柄 和花药脉中表达,这2个位置 SWEET 底物转移的综 合缺陷导致转运到花粉的糖不足,淀粉含量降低,从 而导致雄性不育^[22]。外源 GA 处理可以恢复拟南芥 atsweet13/14 双突变体的雄性不育特性^[44],但是对水 稻 ossweet11a/11b 双突变体的雄性不育无积极作 用^[22]。OsSWEET11a 或OsSWEET11b 蛋白没有 GA 转运活性,表明 ossweet11a/11b 双突变体由于蔗糖转 运缺陷导致雄性不育,而非 GA 供给降低导致^[22]。

被子植物花蜜合成和分泌具有花内蜜腺和花外 蜜腺2种类型^[40]。花蜜的生物合成在花内蜜腺和花 外蜜腺中具有保守性^[87]。拟南芥是一种自交亲和可 育植物,发育出功能蜜腺,生产挥发物和富含己糖的 花蜜。拟南芥 AtSWEET9 基因在蜜腺中高表达,介导 蔗糖摄入和流出^[40,88]。在拟南芥 atsweet9 突变体植 株中未检测到花蜜滴,过表达 AtSWEET9 基因可以增 加花蜜量和葡萄糖量, atsweet9 突变体中转入 AtSWEET9 基因可以恢复花蜜分泌^[40]。在成熟过程 中,AtSWEET9 基因在花内蜜腺中表达量增加,在花 蜜分泌最多时表达量最大。开花前,淀粉在野生型植 株的蜜腺薄壁组织色素体中积累,并降解生成糖,支 持花蜜分泌^[89]。atsweet9 突变体植株蜜腺薄壁组织 的所有细胞中都有淀粉积累,表明 AtSWEET9 蛋白负 责细胞中糖流出;开花期,野生型植株的花蜜保护组 织中含有淀粉粒,可能是花蜜中糖的再次吸收,而 atsweet9 突变体植株没有该特性^[40]。2个蔗糖磷酸 合成酶基因 SPS1 和 SPS2 在拟南芥成熟蜜腺中高表 达,SPS 基因表达受到抑制后,淀粉积累增加,花蜜分 泌功能丧失;在拟南芥蜜腺薄壁组织中,淀粉驱动蔗 糖生物合成后,由 SWEET9 蛋白转运到细胞外空间, CWINV4 蛋白将蔗糖分解成葡萄糖和果糖,产生足够 大的渗透势,使水沿渗透梯度向下流动,促进花蜜形 成;SWEET9 蛋白还参与了蔓菁(雄蕊外蜜腺)和渐 狭叶烟草(雌蕊蜜腺)花蜜分泌^[40]。这些结果说明 SWEET9 蛋白是拟南芥、蔓菁和渐狭叶烟草 3 种双子 叶植物中花蜜特有的糖转运蛋白。

花蜜分泌阶段,SWEET9 和 CWINV4 基因的相对 表达水平决定花蜜中是否富含己糖。如拟南芥和菥 蓂(Thlaspi arvense Linn.)花蜜分泌阶段,SWEET9 和 CWINV4 基因的表达量接近,花蜜中富含己糖^[40,90]。 而陆地棉(Gossypium hirsutum Linn.)的花外蜜腺分泌 的花蜜中富含蔗糖,CWINV4 基因的表达量仅为 SWEET9 基因的 1/6^[87]。西葫芦(Cucurbita pepo Linn.)^[91]、向日葵(Helianthus annuus Linn.)^[92]和笋 瓜(Cucurbita maxima Duch. ex Lam.)^[93]花蜜中也富 含蔗糖,SWEET9 与 CWINV4 基因的表达无相关性。

4.2 在种子中的功能作用

拟南芥种子填充需要3个蔗糖质膜转运蛋白 SWEET11、SWEET12 和 SWEET15。AtSWEET11 基因 主要在线形胚子叶期和成熟绿色胚期的胚乳和种皮 中表达;AtSWEET12 基因在线形胚子叶期和成熟绿 色胚期的种皮中表达量最大,在球心胚期的胚柄和种 皮珠孔端表达;AtSWEET15 基因在球心胚期和成熟 绿色胚期的胚乳中表达,在球心胚前期种子中表达量 很弱,但是在线形胚子叶期和成熟绿色胚期的种皮中 表达量很高^[6]。AtSWEET11、AtSWEET12 和 AtSWEET15 基因在种子发育过程中表现出特定的时 空表达模式,但只有 atsweet11/12/15 三突变体植株 表现出严重的种子缺陷,包括胚发育迟缓、种子质量 降低、淀粉和脂质含量降低,导致种子皱缩,并且在 atsweet11/12/15 三突变体植株中,淀粉在种皮中积 累,而不是在胚中积累,这表明糖从种皮转移到胚中 是由 AtSWEET11、AsSWEET12 和 AtSWEET15 蛋白 介导的蔗糖流入^[6]。在拟南芥种子发育早期阶段, 蔗糖通过维管束卸载到韧皮部。蔗糖通过共质体途 径向种皮的珠孔端转运,随后 AtSWEET15 蛋白将蔗 糖转运到质外体空间。在球心胚期的珠孔端,随着 AtSWEET12 蛋白的出现,共质体卸载转变为质外体 卸载^[94]。AtSWEET12 蛋白在种皮珠孔端表达,说明 AtSWEET12 蛋白转运蔗糖到种皮珠孔端,卸载的蔗 糖用于种皮中淀粉的积累和胚乳中细胞壁生物合 成^[95]。AtSWEET12 蛋白在种子发育早期阶段的胚 柄中表达,说明 AtSWEET12 蛋白将一些蔗糖从种皮 通过 胚 柄 直 接 运 输 到 胚;在 种 子 发 育 后 期, AtSWEET11 蛋白从内珠被、而 AtSWEET15 蛋白从外 珠被向胚运输蔗糖,以满足胚的正常发育^[6]。植物 胚胎的发育依赖于母体组织通过种皮和胚乳提供的 营养。蔗糖是植物中糖类的主要运输形式,通过韧皮 部传递到母体种皮,然后从种皮分泌出来供养胚胎。

玉米 ZmSWEET4 蛋白通过基胚乳转移层转运葡 萄糖和果糖到胚乳,基胚乳转移层是营养进入种子的 输入口,而玉米 zmsweet4c 和水稻 ossweet4 突变体植株 表现出种子填充缺陷,表明基胚乳转移层缺少己糖转 运蛋白,导致母体韧皮部的糖不能转移到胚乳,说明 在玉米和水稻驯化过程中 SWEET4 蛋白可能是被招 募来增加糖输入到胚乳^[35]。果实发育早期,细胞壁 转化酶 CWINV 将输入的蔗糖转化为己糖(葡萄糖和 果糖),SWEET4 蛋白将己糖转运到胚乳,己糖可以促 进有丝分裂,增加细胞数量;果实发育后期,CWINV 蛋白停止表达,诱导蔗糖转运,蔗糖作为细胞分化信 号,促进储藏产物积累^[96]。

已有研究结果^[7,9,97]显示:水稻 OsSWEET4 基因 在授粉后1d的表达量最高,随后表达量下降,而 OsSWEET11、OsSWEET14 和 OsSWEET15 基因的表达 量逐渐升高,在发育后期达到较高的水平,且在水稻 颖果发育过程中, OsSWEET11、OsSWEET14 和 OsSWEET15 基因的 mRNA 表达水平均为最高,这些 基因编码的蛋白质定位于胚珠维管束、珠心突起、环 绕胚乳的珠心表皮以及糊粉层。另外,ossweet11 突变 体植株颖果成熟延迟约 20 d, 籽粒皱缩, 千粒质量和 产量减少,籽粒灌浆速率和结籽率降低;与野生型植 株相比.ossweet11 突变体植株种子胚囊中蔗糖浓度显 著降低,导致籽粒填充缺陷,单粒质量和结实率降 低^[7,9,97]。ossweet11 突变体和野生型水稻的杂交结果 表明突变母本供体导致籽粒灌浆缺陷^[97]。ossweet14 和 ossweet15 突变体种子没有明显表型差异;与 ossweet11 突变体相比, ossweet11/15 和 ossweet11/14 双

突变体籽粒皱缩且直径变小,胚乳形成受阻,且在果 皮中积累淀粉,而颖果中均未形成具有功能的胚乳; 而与野生型植株相比较,ossweet11 突变体以及 ossweet11/15 和 ossweet11/14 双突变体植株的高度、 每株穗数和小穗数没有明显差异[7,9]。胚珠突起与 糊粉层、胚珠表皮与糊粉层的糖转运不存在共质体途 径^[9]。这些结果表明在胚珠维管束, 蔗糖从韧皮部 转移到薄壁组织,通过胞间连丝共质体途径进入胚珠 突起和胚珠表皮, OsSWEET11、OsSWEET14 和 OsSWEET15 蛋白介导蔗糖从维管束薄壁组织进入质 外体,或从胚珠突起和胚珠表皮进入质外体,随后这 3个蛋白质将蔗糖运输到糊粉层和胚乳,促进水稻颖 果胚乳的形成,完成灌浆。OsSWEET15 基因可以弥 补 ossweet11 突变体的缺陷, OsSWEET14 蛋白与 OsSWEET11 蛋白协同作用于水稻籽粒灌浆^[7], OsSWEET11 和 OsSWEET15 蛋白是水稻籽粒填充的 核心成员^[9]。

大豆种子主要由成熟胚组成,为人类和其他动物 所需蛋白质和油脂的主要来源。植物种子发育早期 对于种子数量和大小以及潜在产能具有重要影响。 在发育早期,微小的胚胎迅速生长,并从发育种子的 液体胚乳中获得大量的糖。子叶期胚乳分解,为发育 中的胚胎提供糖,这对种子成熟至关重要^[98]。 GmSWEET15a 和 GmSWEET15b 基因在大豆发育种子 子叶期的胚乳中特异性高表达:gmsweet15 突变体植 株种子在球形胚、心形胚和子叶胚发育过程中,胚发 育和胚乳降解大幅度延迟,并且80%的种子败育,种 子成熟延迟7~10d;而与野生型植株相比,过量表达 GmSWEET15 基因的种子败育率没有差异^[99]。 gmsweet15 突变体植株与野生型植株的互交实验结果 表明:仅gmsweet15(♀)×gmsweet15(å)杂交结籽率 显著降低,说明 gmsweet15 突变体植株种子败育与受 精卵中 GmSWEET15 的等位基因有关; gmsweet15 突 变体植株种子、胚、种皮和胚乳中的蔗糖和葡萄糖含 量显著降低,而在胚发育过程中,糖供给不足是 gmsweet15 突变体植株种子败育的主要原因,增加驱 动光合作用的蔗糖的供给可以部分恢复 gmsweet15 突变体植株的种子败育缺陷^[99]。葡萄糖含量降低可 能激发细胞程序性死亡,抑制细胞分裂,而细胞程序 性死亡与高的种子败育率有关^[98,100]。上述研究结果 表明质膜糖转运蛋白 GmSWEET15 在大豆胚胎发育 中起着至关重要的作用。

在大豆种子发育过程中, GmSWEET10a 和 GmSWEET10b 基因主要在种皮薄壁组织中表达;与野 生型植株相比较,gmsweet10a 和 gmsweet10b 敲除突变 体植株种子大小和油脂含量降低,蛋白质含量升高. 而 GmSWEET10a 和 GmSWEET10b 基因过量表达植株 种子大小和油脂含量显著升高,蛋白质含量降低; gmsweet10a/10b 双突变体植株种子更小,油脂含量更 低,蛋白质含量更高,gmsweet10a/10b 双突变体植株 种胚中蔗糖、葡萄糖和果糖的含量显著降低,种皮中 蔗糖含量(花后14~16d)和己糖含量(花后20~22 d)显著高于野生型植株,说明 gmsweet10a/10b 双突 变体植株中糖从种皮向胚转运的功能缺陷. GmSWEET10a 和 GmSWEET10b 蛋白决定种皮和胚 之间糖的分配^[101]。在种子快速生长阶段,种皮和胚 中的蔗糖含量较高,跨越种皮的蔗糖对于满足快速生 长的种子对碳源日益增长的需求尤为重要。糖分配 影响胚发育,调控脂肪酸和蛋白质生物合成^[96]。在 大豆驯化过程中, GmSWEET10a 基因的选择将更多 的糖从种皮运输到胚,促进胚细胞分裂和扩展,增加 油脂生物合成,从而增加了油脂含量以及种子大小; 由于蛋白质生物合成依赖氮和碳的利用效率, GmSWEET10a 或 GmSWEET10b 蛋白的糖转运活性 增加,导致蛋白质含量降低,说明 GmSWEET10a 和 GmSWEET10b 蛋白通过转运蔗糖、葡萄糖和果糖决 定种子油脂和蛋白质含量,控制种子大小^[101]。

大豆经过驯化改良,其种子中油脂含量增加。大豆群体遗传连锁分析结果显示:15 号染色体 2~6 Mb 区域存在显著调控蛋白质和油脂含量的数量性状位点(QTL)^[37-38,102]。GmSWEET39 蛋白控制大豆种子油脂含量^[38]。GmSWEET39(CC-)基因在花芽和发育的种子中显著表达,在球形胚阶段开始积累,成熟阶段早期达到最高,随后降低,后成熟阶段和干种子阶段没有表达^[37]。GmSWEET39 基因在种皮薄壁组织中大量表达,这对于从种皮卸载光合作用同化物及激发种子储藏启动至关重要^[103]。GmSWEET39 蛋白将种皮薄壁组织中卸载的蔗糖转运到胚,增加胚中蔗糖含量,进而加强蔗糖驱动的脂肪酸生物合成^[104]。

4.3 在果实中的功能作用

果实中糖含量决定其品质和市场价值。苹果 (Malus domestica Borkh.)基因组中有25个 SWEET 基 因,其中9个在果实发育过程中高表达,MdSWEET2e、 MdSWEET9b 和 MdSWEET15a 基因与果实中糖积累 有关,MdSWEET9b 和 MdSWEET15a 基因是不同品种 间糖含量表型变异的主要贡献者^[23]。AnmSWEET5 和 AnmSWEET11 基因在凤梨〔Ananas comosus (Linn.) Merr.]果实发育过程中显著表达^[105]。枇杷 [Eriobotrya japonica (Thunb.) Lindl.]EjSWEET15 基 因高表达与高糖含量相关^[106]。葡萄(Vitis vinifera Linn.)VvSWEET10 基因在果实成熟时极显著表达,在 葡萄和番茄中过量表达VvSWEET10 基因可以显著增 加果实中葡萄糖、果糖和总糖的含量^[25]。

番茄 SISWEET15 基因在果实中的表达量显著高 于营养器官,而 slsweet15 敲除突变体植株的果实大小 和质量显著降低,种子填充和胚发育存在严重缺 陷^[10]。SISWEET15蛋白在微管组织和种皮中表达, 微管组织和种皮是果实中蔗糖卸载的主要部位,在果 实发育过程中,SISWEET15 蛋白介导蔗糖流从韧皮 部释放细胞进入质外体,随后输入薄壁组织,且 SISWEET15 蛋白介导的蔗糖流对于从种皮到发育胚 的蔗糖卸载是必须的,说明 SISWEET15 蛋白从番茄 韧皮部和种皮卸载蔗糖为果实和种子发育提供养 分^[10]。番茄质膜转运蛋白 SISWEET7a 和 SISWEET14 转运葡萄糖、果糖和蔗糖,主要在绿熟期 的花梗、维管束和种子中表达,而 SISWEET7a 或 SISWEET14 基因沉默后果实中糖含量升高,植株高度 增加,果实增大^[107]。在番茄果实的胎座韧皮部薄壁 组织中,蔗糖通过质外体途径卸载,位于胎座和种子 交界的韧皮部薄壁组织可能是蔗糖质外体卸载的部 位^[107]。液泡转化酶与糖信号、细胞壁相关激酶和植 物激素交叉作用促进细胞扩张,SISWEET7a 基因沉 默促进己糖积累和液泡转化酶的表达,改变糖信号可 以促进细胞扩张,生产较大的果实[107]。西瓜 [Citrullus lanatus (Thunb.) Matsum. et Nakai]果实发 育过程中, ClSWEET3 基因在储存细胞中表达量最 高,且表达量与糖含量显著相关,该基因过量表达导 致糖含量升高,而该基因缺失导致糖含量降低^[108]。 黄瓜 (Cucumis sativus Linn.) 己糖转运蛋白 CsSWEET7a 在库组织中高表达,位于韧皮部伴侣细 胞的质膜上,随着果实发育,表达量逐渐增加,过量表 达该基因果实大小以及葡萄糖和果糖含量增加,而 RNAi 植株表现出相反的表型^[109]。在黄瓜果实中, CsSWEET7a 蛋白在韧皮部将伴侣细胞中的己糖转运 到质外体,激发棉子糖家族的低聚糖代谢,促进果实 生长发育[109]。

5 总结和展望

随着物种的进化演变,多倍体化使基因家族成员 得到了扩张。SWEET4、SWEET9和 SWEET39基因是 作物驯化改良选择的关键基因。SWEET蛋白调控植 物生长发育不同生理过程,尤其是源库关系^[8]。例 如:SWEET16和 SWEET17蛋白参与根系发育,提高 氮的利用效率;拟南芥 AtSWEET13和 AtSWEET14蛋 白以及水稻 OsSWEET11a和 OsSWEET11b蛋白参与 花药发育; SWEET9蛋白参与花蜜分泌; 拟南芥 AtSWEET11、AtSWEET12和 AtSWEET15蛋白以及 水稻 OsSWEET4、OsSWEET11、OsSWEET14和 OsSWEET15蛋白控制大豆油脂和蛋白质含量。这些结 果表明 SWEET蛋白参与光合作用同化物分配,控制 作物产量,SWEET基因工程是增加源库强度、提高作 物产量的有效策略。

在不同的植物生长发育中,SWEET 蛋白发挥的 功能不同,例如:拟南芥 AtSWEET8 蛋白在花药发育 早期发挥作用,AtSWEET13 和 AtSWEET14 蛋白在花 药发育后期发挥作用,而水稻 OsSWEET11a 和 OsSWEET11b 蛋白共同调控花药发育。值得注意的 是,部分 SWEET 基因过量表达植株和敲除突变体植 株表型相同,发芽延迟和生长发育延缓,产量下降,韧 皮部装载受损,如水稻 OsSWEET3a、OsSWEET11 和 OsSWEET14 基因^[110-111],拟南芥 AtSWEET11 和 AtSWEET12 基因^[16],马铃薯 StSWEET11 基因^[49]。然 而,SWEET 蛋白调控光合产物分配在不同物种间存 在差异,其作用机制仍然不清楚。

关于 SWEET 蛋白建议重点进行以下研究:1)利 用现代基因组测序技术,结合多组学技术,进行全基 因组关联研究(GWAS)和 QTL 定位,鉴定候选 SWEET 基因控制源库组织中糖类分配的性状,揭示 SWEET 蛋白在植物驯化改良过程中的作用;2)从更 多的物种中鉴定 SWEET 蛋白,挖掘 SWEET 蛋白新 成员及其独特的功能作用,如 SWEET9 蛋白具有独 特的蜜腺分泌功能;3)通过物种间 SWEET 蛋白的比 较,揭示物种的起源和进化关系;4)通过调控 SWEET 蛋白韧皮部装载功能,提高其源到库的转运效率; 5)通过研究 SWEET 蛋白韧皮部卸载的质外体途径 调控种子和果实中糖含量,促进提质增效;6)通过研 究根系中 SWEET 蛋白对液泡中糖的调控机制促进 根系发育,尤其是在无性繁殖植物中的应用。

参考文献:

- LASTDRAGER J, HANSON J, SMEEKENS S. Sugar signals and the control of plant growth and development [J]. Journal of Experimental Botany, 2014, 65(3): 799-807.
- [2] HEDRICH R, SAUER N, NEUHAUS H E. Sugar transport across the plant vacuolar membrane: nature and regulation of carrier proteins[J]. Current Opinion in Plant Biology, 2015, 25: 63-70.
- [3] VAN DEN BROEK P J A, VAN GOMPEL A E, LUTTIK M A H, et al. Mechanism of glucose and maltose transport in plasmamembrane vesicles from the yeast *Candida utilis* [J]. Biochemical Journal, 1997, 321: 487-495.
- [4] CHEN L Q, HOU B H, LALONDE S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature, 2010, 468(7323): 527-532.
- [5] RUAN Y L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling [J]. Annual Review of Plant Biology, 2014, 65: 33-67.
- [6] CHEN L Q, LIN I W, QU X Q, et al. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo [J]. The Plant Cell, 2015, 27(3): 607-619.
- [7] FEI H, YANG Z, LU Q, et al. OsSWEET14 cooperates with OsSWEET11 to contribute to grain filling in rice[J]. Plant Science, 2021, 306: 110851.
- [8] SINGH J, DAS S, JAGADIS GUPTA K, et al. Physiological implications of SWEETs in plants and their potential applications in improving source-sink relationships for enhanced yield [J]. Plant Biotechnology Journal, 2023, 21(8): 1528-1541.
- [9] YANG J, LUO D, YANG B, et al. SWEET11 and 15 as key players in seed filling in rice [J]. New Phytologist, 2018, 218 (2): 604-615.
- [10] KO H Y, HO L H, NEUHAUS H E, et al. Transporter SISWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato[J]. Plant Physiology, 2021, 187 (4): 2230-2245.
- [11] JEENA G S, KUMAR S, SHUKLA R K. Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants
 [J]. Plant Molecular Biology, 2019, 100(4/5): 351-365.
- [12] BREIA R, CONDE A, BADIM H, et al. Plant SWEETs: from sugar transport to plant-pathogen interaction and more unexpected physiological roles [J]. Plant Physiology, 2021, 186(2): 836-852.
- [13] ZHANG J, WANG T, JIA Z, et al. Transcriptome analysis reveals a comprehensive virus resistance response mechanism in pecan infected by a novel badnavirus pecan virus [J]. International Journal of Molecular Sciences, 2022, 23(21): 13576.
- [14] ZHANG J, WANG T, ZHANG F, et al. Comparative analysis of

the transcriptomes of persisting and abscised fruitlets: insights into plant hormone and carbohydrate metabolism regulated self-thinning of pecan fruitlets during the early stage [J]. Current Issues in Molecular Biology, 2021, 44(1): 176–193.

- [15] CHEN L Q, QU X Q, HOU B H, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport [J]. Science, 2012, 335(6065): 207-211.
- [16] EOM J S, CHEN L Q, SOSSO D, et al. SWEETs, transporters for intracellular and intercellular sugar translocation [J]. Current Opinion in Plant Biology, 2015, 25: 53-62.
- [17] MIAO H, SUN P, LIU Q, et al. Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/ biotic stress responses in banana [J]. Scientific Reports, 2017, 7 (1): 3536.
- XIE H, WANG D, QIN Y, et al. Genome-wide identification and expression analysis of SWEET gene family in Litchi chinensis reveal the involvement of LcSWEET2a/3b in early seed development[J].
 BMC Plant Biology, 2019, 19(1): 499.
- [19] LI M, XIE H, HE M, et al. Genome-wide identification and expression analysis of the *StSWEET* family genes in potato (*Solanum tuberosum* L.) [J]. Genes and Genomics, 2020, 42 (2): 135-153.
- [20] YUE W, CAI K, XIA X, et al. Genome-wide identification, expression pattern and genetic variation analysis of SWEET gene family in barley reveal the artificial selection of HvSWEET1a during domestication and improvement [J]. Frontiers in Plant Science, 2023, 14: 1137434.
- [21] YUAN M, ZHAO J, HUANG R, et al. Rice MtN3/saliva/SWEET gene family: evolution, expression profiling, and sugar transport [J]. Journal of Integrative Plant Biology, 2014, 56 (6): 559-570.
- [22] WU L B, EOM J S, ISODA R, et al. OsSWEET11b, a potential sixth leaf blight susceptibility gene involved in sugar transportdependent male fertility [J]. New Phytologist, 2022, 234 (3): 975-989.
- [23] ZHEN Q, FANG T, PENG Q, et al. Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation [J]. Horticulture Research, 2018, 5: 14.
- [24] FENG C Y, HAN J X, HAN X X, et al. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato[J]. Gene, 2015, 573(2): 261-272.
- [25] ZHANG Z, ZOU L, REN C, et al. VvSWEET10 mediates sugar accumulation in grapes[J]. Genes, 2019, 10(4): 255.
- [26] WANG L, YAO L, HAO X, et al. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in *Arabidopsis* [J]. Plant Molecular Biology, 2018, 96(6): 577–592.
- [27] ZHU J, ZHOU L, LI T, et al. Genome-wide investigation and characterization of SWEET gene family with focus on their evolution

and expression during hormone and abiotic stress response in maize [J]. Genes, 2022, 13(10): 1682.

- [28] ZHANG L, WANG L, ZHANG J, et al. Expression and localization of SWEETs in *Populus* and the effect of *SWEET7* overexpression in secondary growth [J]. Tree Physiology, 2021, 41 (5): 882-899.
- [29] GENG Y, WU M, ZHANG C. Sugar transporter ZjSWEET2.2 mediates sugar loading in leaves of Ziziphus jujuba Mill. [J]. Frontiers in Plant Science, 2020, 11: 1081.
- [30] SEVERIN A J, CANNON S B, GRAHAM M M, et al. Changes in twelve homoeologous genomic regions in soybean following three rounds of polyploidy[J]. The Plant Cell, 2011, 23(9): 3129-3136.
- [31] SCHMUTZ J, CANNON S B, SCHLUETER J, et al. Genome sequence of the palaeopolyploid soybean [J]. Nature, 2010, 463 (7278): 178-183.
- [32] PATIL G, VALLIYODAN B, DESHMUKH R, et al. Soybean (*Glycine max*) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis[J]. BMC Genomics, 2015, 16(1): 520.
- [33] JIAO Y, WICKETT N J, AYYAMPALAYAM S, et al. Ancestral polyploidy in seed plants and angiosperms[J]. Nature, 2011, 473 (7345): 97-100.
- [34] QIN J X, JIANG Y J, LU Y Z, et al. Genome-wide identification and transcriptome profiling reveal great expansion of SWEET gene family and their wide-spread responses to abiotic stress in wheat (*Triticum aestivum* L.) [J]. Journal of Integrative Agriculture, 2020, 19(7): 1704-1720.
- [35] SOSSO D, LUO D, LI Q B, et al. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport[J]. Nature Genetics, 2015, 47(12): 1489-1493.
- [36] HUANG X, KURATA N, WEI X, et al. A map of rice genome variation reveals the origin of cultivated rice [J]. Nature, 2012, 490(7421): 497-501.
- [37] ZHANG H, GOETTEL W, SONG Q, et al. Selection of GmSWEET39 for oil and protein improvement in soybean[J]. PLoS Genetics, 2020, 16(11): e1009114.
- [38] MIAO L, YANG S, ZHANG K, et al. Natural variation and selection in *GmSWEET39* affect soybean seed oil content[J]. New Phytologist, 2020, 225(4): 1651-1666.
- [39] JOHNSON S D, HOBBHAHN N, BYTEBIER B. Ancestral deceit and labile evolution of nectar production in the African orchid genus *Disa*[J]. Biology Letters, 2013, 9(5): 20130500.
- [40] LIN I W, SOSSO D, CHEN L Q, et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9
 [J]. Nature, 2014, 508(7497): 546-549.
- [41] BELL C D, SOLTIS D E, SOLTIS P S. The age and diversification of the angiosperms re-revisited [J]. American Journal of Botany, 2010, 97(8): 1296-1303.
- [42] ESCALANTE-PÉREZ M, JABORSKY M, LAUTNER S, et al.

Poplar extrafloral nectaries: two types, two strategies of indirect defenses against herbivores[J]. Plant Physiology, 2012, 159(3): 1176-1191.

- [43] HEIL M, RATTKE J, BOLAND W. Postsecretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism [J]. Science, 2005, 308(5721): 560-563.
- [44] KANNO Y, OIKAWA T, CHIBA Y, et al. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes [J]. Nature Communications, 2016, 7: 13245.
- [45] MORII M, SUGIHARA A, TAKEHARA S, et al. The dual function of OsSWEET3a as a gibberellin and glucose transporter is important for young shoot development in rice [J]. Plant and Cell Physiology, 2020, 61(11): 1935-1945.
- [46] HO L-H, KLEMENS P A W, NEUHAUS H E, et al. SISWEET1a is involved in glucose import to young leaves in tomato plants[J]. Journal of Experimental Botany, 2019, 70(12): 3241-3254.
- [47] MAKITA Y, SHIMADA S, KAWASHIMA M, et al. MOROKOSHI: transcriptome database in Sorghum bicolor [J]. Plant and Cell Physiology, 2015, 56(1): e6.
- [48] BEZRUTCZYK M, HARTWIG T, HORSCHMAN M, et al. Impaired phloem loading in *zmsweet13a*, b, c sucrose transporter triple knock-out mutants in *Zea mays*[J]. New Phytologist, 2018, 218(2): 594-603.
- [49] ABELENDA J A, BERGONZI S, OORTWIJN M, et al. Sourcesink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato [J]. Current Biology, 2019, 29(7): 1178-1186.
- [50] SEO P J, PARK J M, KANG S K, et al. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity[J]. Planta, 2011, 233(1): 189-200.
- [51] NI J, LI J, ZHU R, et al. Overexpression of sugar transporter gene *PbSWEET4* of pear causes sugar reduce and early senescence in leaves[J]. Gene, 2020, 743: 144582.
- [52] VIOLA R, ROBERTS A G, HAUPT S, et al. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading[J]. The Plant Cell, 2001, 13(2): 385-398.
- [53] VALIFARD M, LE HIR R, MÜLLER J, et al. Vacuolar fructose transporter SWEET17 is critical for root development and drought tolerance[J]. Plant Physiology, 2021, 187(4): 2716–2730.
- [54] TAKAHASHI F, SATO-NARA K, KOBAYASHI K, et al. Sugarinduced adventitious roots in *Arabidopsis* seedlings [J]. Journal of Plant Research, 2003, 116(2): 83–91.
- [55] MARTINOIA E, MEYER S, DE ANGELI A, et al. Vacuolar transporters in their physiological context [J]. Annual Review of Plant Biology, 2012, 63: 183-213.
- [56] GUO W J, NAGY R, CHEN H Y, et al. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of *Arabidopsis* roots and leaves[J]. Plant Physiology, 2014, 164(2): 777-789.
- [57] TOHGE T, RAMOS M S, NUNES-NESI A, et al. Toward the

storage metabolome: profiling the barley vacuole [J]. Plant Physiology, 2011, 157(3): 1469-1482.

- [58] ETXEBERRIA E, POZUETA-ROMERO J, GONZALEZ P. In and out of the plant storage vacuole [J]. Plant Science, 2012, 190: 52-61.
- [59] CHO Y H, YOO S D. Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana [J]. PLoS Genetics, 2011, 7 (1): e1001263.
- [60] WORMIT A, TRENTMANN O, FEIFER I, et al. Molecular identification and physiological characterization of a novel monosaccharide transporter from *Arabidopsis* involved in vacuolar sugar transport[J]. The Plant Cell, 2006, 18(12): 3476-3490.
- [61] CHARDON F, BEDU M, CALENGE F, et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in *Arabidopsis*[J]. Current Biology, 2013, 23(8): 697–702.
- [62] KLEMENS P A, PATZKE K, DEITMER J, et al. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis[J]. Plant Physiology, 2013, 163(3): 1338-1352.
- [63] DEKKERS B J W, SCHUURMANS J A M J, SMEEKENS S C M. Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis[J]. Plant Molecular Biology, 2008, 67(1/2): 151-167.
- [64] CHEN H Y, HUH J H, YU Y C, et al. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts *Pythium* infection [J]. The Plant Journal, 2015, 83 (6): 1046-1058.
- [65] SLEWINSKI T L. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective[J]. Molecular Plant, 2011, 4(4): 641-662.
- [66] TAO Y, CHEUNG L S, LI S, et al. Structure of a eukaryotic SWEET transporter in a homo-trimeric complex[J]. Nature, 2015, 527(7577): 259-263.
- [67] KRYVORUCHKO I S, SINHAROY S, TORRES-JEREZ I, et al. MtSWEET11, a nodule-specific sucrose transporter of *Medicago* truncatula[J]. Plant Physiology, 2016, 171(1): 554-565.
- [68] ROUX B, RODDE N, JARDINAUD M-F, et al. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing[J]. The Plant Journal, 2014, 77(6): 817-837.
- [69] MA H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants[J]. Annual Review of Plant Biology, 2005, 56: 393-434.
- [70] BORGHI M, FERNIE A R. Floral metabolism of sugars and amino acids: implications for pollinators' preferences and seed and fruit set[J]. Plant Physiology, 2017, 175(4): 1510-1524.
- [71] MÜLLER G L, DRINCOVICH M F, ANDREO C S, et al. Role of photosynthesis and analysis of key enzymes involved in primary metabolism throughout the lifespan of the tobacco flower [J]. Journal of Experimental Botany, 2010, 61(13): 3675-3688.

- [72] SANDERS P M, BUI A Q, WETERINGS K, et al. Anther developmental defects in *Arabidopsis thaliana* male-sterile mutants
 [J]. Sexual Plant Reproduction, 1999, 11(6): 297-322.
- [73] GUAN Y F, HUANG X Y, ZHU J, et al. RUPTURED POLLEN GRAINI, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis[J]. Plant Physiology, 2008, 147(2): 852-863.
- [74] YU H J, HOGAN P, SUNDARESAN V. Analysis of the female gametophyte transcriptome of Arabidopsis by comparative expression profiling[J]. Plant Physiology, 2005, 139(4): 1853-1869.
- [75] WANG J, XUE X, ZENG H, et al. Sucrose rather than GA transported by AtSWEET13 and AtSWEET14 supports pollen fitness at late anther development stages [J]. New Phytologist, 2022, 236(2): 525-537.
- [76] XUE J S, YAO C, XU Q L, et al. Development of the middle layer in the anther of *Arabidopsis*[J]. Frontiers in Plant Science, 2021, 12: 634114.
- [77] HEDHLY A, VOGLER H, SCHMID M W, et al. Starch turnover and metabolism during flower and early embryo development [J].
 Plant Physiology, 2016, 172(4): 2388-2402.
- [78] WANG J, KAMBHAMPATI S, ALLEN D K, et al. Comparative metabolic analysis reveals a metabolic switch in mature, hydrated, and germinated pollen in *Arabidopsis thaliana* [J]. Frontiers in Plant Science, 2022, 13: 836665.
- [79] ZHENG Y, DENG X, QU A, et al. Regulation of pollen lipid body biogenesis by MAP kinases and downstream WRKY transcription factors in *Arabidopsis* [J]. PLoS Genetics, 2018, 14 (12): e1007880.
- [80] WANG J, YU Y C, LI Y, et al. Hexose transporter SWEET5 confers galactose sensitivity to Arabidopsis pollen germination via a galactokinase[J]. Plant Physiology, 2022, 189(1): 388-401.
- [81] MARCINIAK K, PRZEDNICZEK K. Comprehensive insight into gibberellin- and jasmonate-mediated stamen development [J]. Genes (Basel), 2019, 10(10): 811.
- [82] RIEU I, RUIZ-RIVERO O, FERNANDEZ-GARCIA N, et al. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle[J]. The Plant Journal, 2008, 53(3): 488-504.
- [83] KO H Y, TSENG H W, HO L H, et al. Hexose translocation mediated by SISWEET5b is required for pollen maturation in *Solanum lycopersicum* [J]. Plant Physiology, 2022, 189 (1): 344-359.
- [84] SHEN S, MA S, LIU Y, et al. Cell wall invertase and sugar transporters are differentially activated in tomato styles and ovaries during pollination and fertilization[J]. Frontiers in Plant Science, 2019, 10: 506.
- [85] LI C, MENG D, PIÑEROS M A, et al. A sugar transporter takes up both hexose and sucrose for sorbitol-modulated *in vitro* pollen tube growth in apple [J]. The Plant Cell, 2020, 32(2): 449-

469.

- [86] YANG B, SUGIO A, WHITE F F. Os8N3 is a host diseasesusceptibility gene for bacterial blight of rice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10503-10508.
- [87] CHATT E C, MAHALIM S N, MOHD-FADZIL N A, et al. Nectar biosynthesis is conserved among floral and extrafloral nectaries[J]. Plant Physiology, 2021, 185(4): 1595–1616.
- [88] KRAM B W, XU W W, CARTER C J. Uncovering the Arabidopsis thaliana nectary transcriptome: investigation of differential gene expression in floral nectariferous tissues [J]. BMC Plant Biology, 2009, 9: 92.
- [89] GE Y X, ANGENENT G C, WITTICH P E, et al. NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida [J]. The Plant Journal, 2008, 24(6): 725-734.
- [90] THOMAS J B, HAMPTON M E, DORN K M, et al. The pennycress (*Thlaspi arvense* L.) nectary: structural and transcriptomic characterization[J]. BMC Plant Biology, 2017, 17 (1): 201.
- [91] SOLHAUG E M, ROY R, CHATT E C, et al. An integrated transcriptomics and metabolomics analysis of the *Cucurbita pepo* nectary implicates key modules of primary metabolism involved in nectar synthesis and secretion [J]. Plant Direct, 2019, 3(2): e00120.
- [92] PRASIFKA J R, MALLINGER R E, PORTLAS Z M, et al. Using nectar-related traits to enhance crop-pollinator interactions [J].
 Frontiers in Plant Science, 2018, 9: 812.
- [93] CHATT E C, VON ADERKAS P, CARTER C J, et al. Sexdependent variation of pumpkin (*Cucurbita maxima* cv. Big Max) nectar and nectaries as determined by proteomics and metabolomics [J]. Frontiers in Plant Science, 2018, 9: 860.
- [94] WERNER D, GERLITZ N, STADLER R. A dual switch in phloem unloading during ovule development in *Arabidopsis* [J]. Protoplasma, 2011, 248(1): 225-235.
- [95] FALLAHI H, SCOFIELD G N, BADGER M R, et al. Localization of sucrose synthase in developing seed and siliques of *Arabidopsis thaliana* reveals diverse roles for SUS during development [J]. Journal of Experimental Botany, 2008, 59(12): 3283-3295.
- [96] WEBER H, BORISJUK L, WOBUS U. Molecular physiology of legume seed development [J]. Annual Review of Plant Biology, 2005, 56: 253-279.
- [97] MA L, ZHANG D, MIAO Q, et al. Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling [J]. Plant and Cell Physiology, 2017, 58(5): 863-873.
- [98] RUAN Y L, PATRICK J W, BOUZAYEN M, et al. Molecular regulation of seed and fruit set[J]. Trends in Plant Science, 2012, 17(11): 1360-1385.
- [99] WANG S, YOKOSHO K, GUO R, et al. The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo [J]. Plant Physiology, 2019, 180(4): 2133-

2141.

- [100] LIU Y H, OFFLER C E, RUAN Y L. Cell wall invertase promotes fruit set under heat stress by suppressing ROSindependent cell death [J]. Plant Physiology, 2016, 172(1): 163-180.
- [101] WANG S, LIU S, WANG J, et al. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication [J]. National Science Review, 2020, 7(11): 1776-1786.
- [102] YANG H, WANG W, HE Q, et al. Identifying a wild allele conferring small seed size, high protein content and low oil content using chromosome segment substitution lines in soybean
 [J]. Theoretical and Applied Genetics, 2019, 132 (10): 2793-2807.
- [103] VAN DONGEN J T, AMMERLAAN A M H, WOUTERLOOD M, et al. Structure of the developing pea seed coat and the postphloem transport pathway of nutrients [J]. Annals of Botany, 2003, 91(6): 729-737.
- [104] ZHAI Z, LIU H, XU C, et al. Sugar potentiation of fatty acid and triacylglycerol accumulation [J]. Plant Physiology, 2017, 175 (2): 696-707.
- [105] GUO C, LI H, XIA X, et al. Functional and evolution characterization of SWEET sugar transporters in *Ananas comosus* [J]. Biochemical and Biophysical Research Communications, 2018, 496(2): 407-414.
- [106] LI J, CHEN D, JIANG G L, et al. Molecular cloning and expression analysis of *EjSWEET15*, enconding for a sugar transporter from loquat [J]. Scientia Horticulturae, 2020, 272: 109552.
- [107] ZHANG X, FENG C, WANG M, et al. Plasma membranelocalized SISWEET7a and SISWEET14 regulate sugar transport and storage in tomato fruits [J]. Horticulture Research, 2021, 8 (1): 186.
- [108] REN Y, LI M, GUO S, et al. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits[J]. The Plant Cell, 2021, 33(5): 1554–1573.
- [109] LI Y, LIU H, YAO X, et al. Hexose transporter CsSWEET7a in cucumber mediates phloem unloading in companion cells for fruit development[J]. Plant Physiology, 2021, 186(1): 640-654.
- [110] KIM P, XUE C Y, SONG H D, et al. Tissue-specific activation of DOF11 promotes rice resistance to sheath blight disease and increases grain weight via activation of SWEET14 [J]. Plant Biotechnology Journal, 2021, 19(3): 409-411.
- [111] GAO Y, ZHANG C, HAN X, et al. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease [J]. Molecular Plant Pathology, 2018, 19(9): 2149-2161.

(责任编辑:张明霞)