绿豆乙醇脱氢酶基因生物信息学分析及其 在镉胁迫下的表达特性变化

程 斌,张创娟,杨 乐,冷 艳,李师翁^① (兰州交通大学生物与制药工程学院,甘肃 兰州 730070)

摘要:基于绿豆[Vigna radiata (Linn.) R. Wilczek]基因组注释文件鉴定乙醇脱氢酶基因(ADHs),并采用生物信息 学方法分析了绿豆 ADHs 基因结构及其编码的氨基酸序列的理化特性和系统关系;运用转录组和酶学方法分析了 Cd 胁迫条件下绿豆幼苗根、茎和叶片中 ADHs 基因的表达量和 ADH 酶活性的变化。结果表明:绿豆基因组含有 15 个 ADHs 基因,依次命名为 VrADH1 至 VrADH15;15 个 VrADHs 基因的序列长度为 237~1 603 bp,其中,仅 VrADH10 基因包含 2 个内含子和 2 个外显子,其他 VrADHs 基因分别包含 7~9 个内含子和 7~10 个外显子。15 个 VrADHs 的 氨基酸序列中,除 VrADH1 和 VrADH10 外,其他 VrADHs 均含有 10 个 motif。15 个 VrADHs 的氨基酸残基数为 78~ 444,相对分子质量 8 840~48 390,等电点 pI 4.83~pI 8.22,亲水性系数-0.259~0.090;其中,仅 VrADH10 属于短链 脱氢酶,其他 VrADHs 均属于中、长链脱氢酶;仅 VrADH10 含有 ADH_N 结构域,其他 VrADHs 均含有 ADH_N 和 ADH_zinc_N 结构域,且 VrADH1 还含有 ADH_zinc_N_2 结构域。NJ 系统发育树将 15 个 VrADHs 及大豆[Glycine max (Linn.) Merr.]的31个GmADHs 和拟南芥[Arabidopsis thaliana (Linn.) Hevnh.]的8个AtADHs 分为3个分支, 其中绿豆与大豆的 ADHs 亲缘关系更近。转录组和酶活性分析结果显示: VrADH7、VrADH8 和 VrADH10 基因在根、 茎和叶片中均未表达,而其他 VrADHs 基因均不同程度表达,且表达水平随生长时间而异;在根、茎和叶片中相对表 达量最高的基因分别为 VrADH1、VrADH3 和 VrADH14。经 100 μmol · L⁻¹ Cd 胁迫处理后,多数 VrADHs 基因的相对 表达量较对照上调,且部分基因的相对表达量与对照差异显著(P<0.05)。经 Cd 胁迫处理后绿豆幼苗根、茎和叶片 中 ADH 酶活性总体上均高于对照。综合分析结果表明:绿豆幼苗根、茎和叶片中 VrADHs 基因的表达特性存在明 显差异,部分 VrADHs 基因的表达呈现组织特异性;Cd 胁迫处理后绿豆幼苗 ADH 酶活性的升高与某些 VrADHs 基因 的表达水平上调有关,表明这些 VrADHs 基因参与了绿豆对 Cd 胁迫的响应过程。

关键词:绿豆;乙醇脱氢酶基因;转录组;镉胁迫;表达特性

中图分类号: Q75; Q948.113; S643.9 文献标志码: A 文章编号: 1674-7895(2022)02-0010-12 DOI: 10.3969/j.issn.1674-7895.2022.02.02

Bioinformatics analysis on alcohol dehydrogenase genes in *Vigna radiata* and changes of their expression characteristics under cadmium stress CHENG Bin, ZHANG Chuangjuan, YANG Le, LENG Yan, LI Shiweng^① (School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China), *J. Plant Resour. & Environ.*, 2022, **31**(2): 10–21

Abstract: Alcohol dehydrogenase genes (*ADHs*) were identified based on the genome annotation file of *Vigna radiata* (Linn.) R. Wilczek, and the genetic structures of *ADHs* of *V. radiata* and the physicochemical properties and systematic relationships of their encoded amino acid sequences were analyzed by using bioinformatics method; the changes of expression levels of *ADHs* and activities of ADH

收稿日期: 2021-09-07

基金项目:国家自然科学基金资助项目(31760110)

作者简介:程 斌(1996—),男,甘肃甘谷人,硕士研究生,主要从事植物分子生物学方面的研究。

^①通信作者 E-mail: lishweng@ mail.lzjtu.cn

引用格式:程 斌,张创娟,杨 乐,等.绿豆乙醇脱氢酶基因生物信息学分析及其在镉胁迫下的表达特性变化[J].植物资源与环境学报,2022, 31(2):10-21.

enzyme in roots, stems, and leaves of V. radiata seedlings under Cd stress condition were analyzed by using transcriptome and enzymology methods. The results show that there are 15 ADHs in V. radiata genome, which are named as VrADH1 to VrADH15 in sequence; the sequence length of 15 VrADHs are 237-1 603 bp, in which, only VrADH10 contains 2 introns and 2 exons, and the other VrADHs contain 7-9 introns and 7-10 exons. Among the amino acid sequences of 15 VrADHs, all VrADHs except VrADH1 and VrADH10 contain 10 motifs. The number of amino acid residues of 15 VrADHs are 78-444, the relative molecular masses are 8 840-48 390, the isoelectric points are pI 4.83-pI 8.22, and the hydrophilic coefficients are -0.259-0.090; in which, only VrADH10 belongs to short-chain dehydrogenase, and the other VrADHs belong to medium or long-chain dehydrogenases; only VrADH10 contains ADH_N domain, the other VrADHs all contain ADH_N and ADH_zinc_N domains, and VrADH1 also contains ADH_zinc_N_2 domain. The 15 VrADHs, 31 GmADHs of Glycine max (Linn.) Merr., and 8 AtADHs of Arabidopsis thaliana (Linn.) Heynh. are grouped into three branches by NJ phylogenetic tree, in which, the relationships of ADHs between V. radiata and G. max are closer. The analysis results of transcriptome and enzyme activities show that VrADH7, VrADH8, and VrADH10 are not expressed in roots, stems, and leaves, while the other VrADHs are all expressed at different degrees, and the expression levels vary with the growth time; genes with the highest relative expression levels in roots, stems, and leaves are VrADH1, VrADH3, and VrADH14, respectively. The relative expression levels of most VrADHs are up-regulated compared with the control after treated with 100 μ mol \cdot L⁻¹ Cd stress, and the relative expression levels of some genes are significantly (P < 0.05) different from the control. The ADH enzyme activities of roots, stems, and leaves of V. radiata seedlings after Cd stress treatment are generally higher than those of the control. The comprehensive analysis results show that there are evident differences in expression characteristics of VrADHs in roots, stems, and leaves of V. radiata seedlings, and expression of some of the VrADHs show tissue specificity; the increase of activity of ADH enzyme of V. radiata seedlings after Cd stress treatment is related to the up-regulation of some VrADHs, suggesting that these VrADHs are involved in the response process of V. radiata to Cd stress.

Key words: *Vigna radiata* (Linn.) R. Wilczek; alcohol dehydrogenase gene; transcriptome; cadmium stress; expression characteristics

乙醇脱氢酶(ADH)是生物体内主要短链醇代谢 的关键酶,广泛存在于所有生物细胞中,由多基因家 族编码,主要分为3个亚家族:短链脱氢酶/还原酶, 少于250个氨基酸残基;中链脱氢酶/还原酶,约含 350个氨基酸残基;长链脱氢酶/还原酶,含385~900 个氨基酸残基^[1]。典型的ADH是锌结合酶,锌结合 位点含206~340个氨基酸残基^[2],其结构域包含底 物结合或催化结构域和辅酶结合结构域,其中,底物 结合或催化结构域为N末端的不规则 β 卷曲和一小 段C末端区域,含35~164个氨基酸残基;而辅酶结 合结构域则含有结合 NAD 的 Rossmann 折叠^[3]。

植物的 ADH 基因属于一个小的多基因家族,如水稻(Oryza sativa Linn.)^[4]和玉米(Zea mays Linn.)^[5]等含有2或3个 ADHs。ADHs 基因可参与果 实成熟过程,如番茄(Lycopersicon esculentum Mill.) ADH2 基因参与果实成熟过程中的挥发性香气成分的代谢,过表达 ADH2 可以改善水果风味^[6],且在甜瓜(Cucumis melo Linn.)^[7]和杧果(Mangifera indica Linn.)^[8]中也有相似的结果。ADHs 基因还可参与植

物激素调控,如白梨(Pyrus bretschneideri Rehd.)的 ADH 基因参与激素调节作用,且对脱落酸、吲哚乙酸 和乙烯的调节模式不同^[9]。在胁迫条件下,ADH 基 因能够通过调节活性氧(ROS)相关基因的表达水平 保持细胞内 ROS 的稳定状态^[10],同时,ADH 基因也 有助于植株积累更多的可溶性糖和胼胝质等物质,对 植物细胞的渗透压起到调节作用^[11-14]。Komatsu 等^[15]发现,水淹胁迫后大豆[Glycine max(Linn.) Merr.]幼苗 ADH2 基因的表达显著增强,但 ADH2 基 因的表达对渗透、低温和干旱等胁迫处理均不响应, 表明 ADH2 基因是在大豆根中表达的对淹水响应的 特异性基因。另外,低氧胁迫环境下 ADH 基因的表 达增强,能提高绿豆的耐涝性^[16]。上述研究结果均 表明:ADH 基因参与植物生长发育、有氧代谢及各种 胁迫响应等多项生理生化过程^[17,18]。

土壤 Cd 污染是严重的环境问题之一,不但影响 作物的生长和产量,而且通过食物链危害人类健康。 一些植物种类可通过根系从土壤中吸收重金属,并产 生耐受性^[19],因而可用于土壤重金属污染的修复。 豆科(Fabaceae)植物的根瘤使其在土壤重金属污染 修复方面具有独特优势^[20]。因而,研究豆科植物对 重金属耐受性的分子机制,特别是特定基因对重金属 的响应特征,对了解植物对重金属的耐受机制,以及 重金属污染土壤的植物修复机制都具有重要意义。

绿豆[Vigna radiata (Linn.) R. Wilczek]为种植 较为广泛的豆科植物之一,为掌握绿豆对 Cd 胁迫的 耐受性及其耐受机制,前期本课题组的研究人员运用 转录组技术研究了 Cd 胁迫对绿豆根基因表达的影 响^[21]。为进一步揭示绿豆对 Cd 胁迫的分子响应机 制,作者在前期研究工作的基础上,采用基因组学、转 录组学和酶学等方法,鉴定并分析绿豆的 ADHs 基因 及其编码的氨基酸序列特征,并对正常和 Cd 胁迫条 件下绿豆不同部位 ADHs 基因表达特性以及 ADH 酶 活性的变化进行比较分析,以期为植物 ADHs 基因的 功能研究及应用提供科学资料。

1 材料和方法

1.1 材料

绿豆种子经自来水清洗后,用体积分数 6% NaClO 溶液浸泡 15 min,并用无菌水清洗后,置于 (25.0 ± 0.5) ℃恒温箱中浸种 24 h;在塑料育苗盘中加 入适量育苗基质[V(珍珠岩) : V(蛭石) = 1 : 1],每 盘 15 个育苗格,每个育苗格的长、宽、高分别为 9、8、 7 cm。每个育苗格播种 20 粒绿豆种子,置于光照培 养箱中培养 5 d,培养条件为温度(25.0±1.0)℃、光照 时间 14 h・d⁻¹、光照强度 100 µmol・m⁻²・s⁻¹。

1.2 方法

1.2.1 Cd 胁迫处理和样品采集 Cd 胁迫处理分为 对照组和处理组,分别以 Hoagland 营养液和含 100 μmol·L⁻¹ CdCl₂·2H₂O 的 Hoagland 营养液为培养 液,每组 3 个生物学重复,每个重复 1 盘。对照组和 处理组每个育苗格均加入 70 mL 相应培养液,并在处 理第 5 天分别补充 70 mL 相应培养液。

于处理的第1、第5和第9天,从对照组和处理 组的育苗盘中分别取出80株绿豆幼苗植株,清洗并 吸干表面水分后,分别剪取植株的根、茎和叶片,用液 氮速冻后置于-80℃条件下保存,用于转录组分析。 于处理的第1、第3、第5、第7和第9天,从对照组和 处理组的育苗盘中分别取80株植株,清洗并吸干表 面水分后,将根、茎和叶片分开,用于酶活性测定。 1.2.2 *ADH* 基因筛选、鉴定和蛋白特性分析 从 NCBI 数据库(https://www.ncbi.nlm.nih.gov/)下载绿 豆全基因组及注释文件信息,筛选已注释的绿豆 *ADHs* 基因序列;从 Ensembl Plants 数据库(http:// plants. ensembl. org/index. html)检索拟南芥 [*Arabidopsis thaliana* (Linn.) Heynh.] *ADHs* 基因序 列;从 NCBI 数据库得到大豆基因组注释文件和蛋白 序列文件,通过检索后筛选得到大豆 *ADHs* 基因 序列。

用基于隐马尔可夫模型(HMMER)的工具(https:// www.ebi.ac.uk/Tools/hmmer/search/hmmscan)对下载 的绿豆基因组注释蛋白序列进行检索,设置e-value值 为0.0001,得到绿豆 ADH 蛋白的氨基酸序列;再利 用 Pfam 数据库(http://pfam.xfam.org)进行蛋白结构 域鉴定,确定所有获得的蛋白均含有 ADH 结构域。

使用 ProtParam(http://web.expasy.org/protparam) 分析 ADHs 蛋白理化性质,包括相对分子质量、等电 点和氨基酸残基数等。使用 MEME 线上平台(http:// meme-suite.org/tools/meme)进行蛋白 motif 分析,将 鉴定的绿豆 ADHs 蛋白的氨基酸序列与拟南芥和大 豆 ADHs 蛋白的氨基酸序列进行比对;使用 MEGA 7.0软件基于邻接法(Neighbour-joining)构建系统发 育树,并用 Tbtools 工具对结果进行可视化处理。 1.2.3 转录组测序 参照文献[21,22]的方法提取 总 RNA 并制备 cDNA 文库。使用 MJ-plant 植物总

总 RNA 开制备 cDNA 义库。使用 MJ-plant 值初总 RNA 提取试剂盒(上海美吉生物医药科技股份有限 公司)进行总 RNA 提取,并用 NanoDrop 2000 分光光 度计(美国 Thermo-Fisher 公司)和安捷伦 2100 生物 分析仪(美国 Agilent 公司)评估 RNA 的数量和质量。 使用 Truseq[™] RNA 样品制备试剂盒(美国 Illumina 公 司)纯化 mRNA,并用 Truseq[™] DNA 文库制备试剂盒 (美国 Illumina 公司)构建 cDNA 文库。用 Illumina Novaseq 6000 系统对构建的 cDNA 文库进行测序,测 序工作由上海美吉生物医药科技有限公司完成。

参照文献[21]的方法分析测序数据和差异基因。对9个基因和1个内参基因进行 qRT-PCR 分析,并进行 qRT-PCR 验证,其结果与转录组测序数据的相关系数(r^2)为 0.925($P \le 0.01$),表明转录组数据与 qRT-PCR 数据结果高度一致。

基因相对表达量以 TPM(transcripts per kilobase per million mapped reads)表示;用 $2^{-\Delta\Delta C_t}$ 法计算基因 的表达量,并用 Tbtools 工具基于 \log_2 TPM 绘制基因

表达谱。

1.2.4 ADH 酶活性分析 参照施海涛^[23]的方法测 定 ADH 酶活性。

1.3 数据处理和统计分析

采用 EXCEL 2016 软件进行数据统计,采用 SPSS 21.0 软件进行单因素方差分析和显著性检验(*LSD* 检验,*P*<0.05),采用 GraphPad Prism 9 软件绘图。

2 结果和分析

2.1 绿豆 ADHs 基因的生物信息学分析

2.1.1 绿豆 ADHs 基因鉴定和结构特征 对获得的

绿豆基因组注释文件进行检索,共鉴定得到 15 个 ADHs 基因,依次命名为 VrADH1 至 VrADH15,基因序 列长度为 447~15 055 bp,GC 含量为 26.53%~ 39.08%。相比之下,绿豆 ADHs 基因数量多于拟南芥 (8个,AtADH1 至 AtADH8),但少于同科的大豆(32 个,GmADH1 至 GmADH32)。

对绿豆、大豆和拟南芥 ADHs 基因结构(图1)的 比较结果表明:绿豆、大豆和拟南芥的 ADHs 基因均 含有不同数量的内含子和外显子。在绿豆的 VrADHs 基因中,仅 VrADH10 包含 2 个内含子和 2 个外显子, 其他 VrADHs 分别包含 7~9 个内含子和 7~10 个外 显子。

基因序列长度/bp Gene sequence length

■: 非翻译区 Untranslated regions; ■: 外显子 Exons; —: 内含子 Introns. Vr: 绿豆 Vigna radiata (Linn.) R. Wilczek; At: 拟南芥 Arabidopsis thaliana (Linn.) Heynh.; Gm: 大豆 Clycine max (Linn.) Merr.

图1 绿豆、拟南芥和大豆的 ADHs 基因结构的比较

Fig. 1 Comparison on genetic structure of *ADHs* of *Vigna radiata* (Linn.) Wilczek, *Arabidopsis thaliana* (Linn.) Heynh., and *Glycine max* (Linn.) Merr. 对绿豆、大豆和拟南芥的 ADHs 氨基酸序列中保 守 motif 的比较结果(图 2)表明:3个种类的 ADHs 共 包含 10个 motif,且多数 ADHs 含有相似的 motif。在 绿豆的 ADHs 氨基酸序列中,VrADH2 至 VrADH9 和 VrADH11 至 VrADH15 均含有 10个 motif,而 VrADH1 不包含 motif5 和 motif7,VrADH10 仅含有 motif3。

染色体定位结果表明:在绿豆的 15 个 VrADHs 基 因中, VrADH2 和 VrADH5 无法定位到任何染色体上, 其他 13 个 VrADHs 基因定位于 8 条染色体上。其中, VrADH3、VrADH4 和 VrADH14 定位于 6 号染色体上, VrADH7、VrADH8 和 VrADH11 定位于 8 号染色体上,

VrADH1	1 9 3 2 10 6 8 4
VrADH2	1 9 3 5 2 10 7 6 8 4
VrADH3	- 1 9 3 5 2 10 7 6 8 4
VrADH4	- 1 - 9 3 - 5 2 10 7 6 8 4 -
VrADH5	
VrADH6	
VrADH7	
VrADH8	
VrADH9	
VrADH10	
VrADH11	
VrADU12	
VIADH12	
VIADIII3	
VIADH14	
VIADHIS	
AtaDHI	
AtADH2	
AtADH3	- 1 9 3 5 2 10 7 6 8 4
AtADH4	1 9 3 5 2 10 7 6 8 4
AtADH5	
AtADH6	1 9 3 5 2 10 7 6 8 4
AtADH7	- 1 - 9 3 - 5 2 - 10 7 6 8 4 -
AtADH8	1 9 3 5 2 10 7 6 8 4
GmADH1	
GmADH2	
GmADH3	
GmADH4	
GmADH5	
GmADH6	
GmADH7	
GmADH8	
GmADH0	
Gm A DU10	
Gm A DU11	
Gm A DH12	
Cm ADII12	
GINADHI3	
GmADH14	
GMADHIS	
GmADH16	
GmADH17	
GmADH18	
GmADH19	
GmADH20	
GmADH21	1 9 3 2 10 6 8 4
GmADH22	1 9 3 2 10 6 8 4
GmADH23	
GmADH24	
GmADH25	
GmADH26	
GmADH27	1 9 3 5 2 10 7 6 8 4
GmADH28	
GmADH29	1 9 3 2 10 6 8 4
GmADH30	1 9 3 5 2 10 7 6 8
GmADH31	
GmADH32	
511101102	
	0 50 100 150 200 250 200 250 400 450
	0 30 100 130 200 230 300 330 400 430

氨基酸残基数 Number of amino acid residues

不同彩色框表示不同 motif Different colored boxes indicate the different motifs. Vr: 绿豆 Vigna radiata (Linn.) R. Wilczek; At: 拟南芥 Arabidopsis thaliana (Linn.) Heynh.; Gm: 大豆 Glycine max (Linn.) Merr.

图 2 绿豆、拟南芥和大豆的 ADHs 氨基酸序列中保守 motif 的比较 Fig. 2 Comparison on conserved motifs of amino acid sequences of ADHs of *Vigna radiata* (Linn.) Wilczek, *Arabidopsis thaliana* (Linn.) Heynh., and *Glycine max* (Linn.) Merr. *VrADH10* 和 *VrADH12* 定位于 9 号染色体上, *VrADH13*、*VrADH9*、*VrADH6*、*VrADH1* 和 *VrADH15* 分别 定位于 1、2、3、7 和 10 号染色体上。

2.1.2 绿豆 VrADHs 蛋白的理化性质 结果(表1) 显示:绿豆 VrADHs 蛋白的理化性质存在一定的差 异。在15个VrADHs中,VrADH2的氨基酸序列最长 (包含444个氨基酸残基),相对分子质量最大 (48 390); VrADH10 的氨基酸序列最短(包含 78 个 氨基酸残基),相对分子质量最小(8840)。从氨基酸 序列长度看,仅 VrADH10 属于短链脱氢酶, VrADH1、 VrADH2、VrADH7、VrADH11、VrADH12 和 VrADH15 属于长链脱氢酶,其余 VrADHs 均属于中链脱氢酶。 15个 VrADHs 的氨基酸序列等电点为 pI 4.83~ pI 8.22,其中,仅 VrADH1 的等电点大于 pI 7,为碱性 蛋白;其他 VrADHs 的等电点均小于 pI 7,为酸性蛋 白。VrADH1、VrADH3、VrADH4、VrADH10、VrADH11 和 VrADH12 的亲水性系数小于 0, 说明这 6 个 VrADHs 均为亲水性蛋白;其他 9个 VrADHs 均为疏 水性蛋白。

表 1	绿豆	VrADHs	蛋白	的理	化性质
AC I	- A - A	11110110		H 12T	FL 11/9

 Table 1
 The physicochemical properties of VrADHs of Vigna radiata

 (Linn.)
 Wilczek

蛋白名称 Protein name	相对分子质量 Relative molecular mass	等电点 Isoelectric point	氨基酸残基数 Number of amino acid residues	亲水性系数 Hydrophilic coefficient
VrADH1	45 700	pI 8.22	430	-0.015
VrADH2	48 390	pI 6.61	444	0.059
VrADH3	41 210	pI 6.57	380	-0.078
VrADH4	40 940	pI 5.91	380	-0.022
VrADH5	40 800	pI 5.97	379	0.002
VrADH6	40 380	pI 6.32	379	0.027
VrADH7	42 040	pI 6.82	391	0.090
VrADH8	40 740	pI 6.82	379	0.046
VrADH9	40 130	pI 6.03	376	0.077
VrADH10	8 840	pI 4.83	78	-0.259
VrADH11	43 310	pI 6.13	400	-0.067
VrADH12	43 380	pI 6.47	397	-0.072
VrADH13	40 460	pI 6.55	376	0.067
VrADH14	41 530	pI 5.67	384	0.026
VrADH15	41 870	pI 6.38	388	0.058

2.1.3 ADHs 蛋白的系统发育分析 绿豆 VrADHs 蛋白与模式植物拟南芥和同科植物大豆 ADHs 蛋白的 NJ 系统发育树见图 3。

由图 3 可见:除 GmADH28 外,54 个 ADHs 分为 3 个分支,分支 I 包含 VrADH1、GmADH21、GmADH22、

●: 绿豆 Vigna radiata (Linn.) R. Wilczek; ▲: 拟南芥 Arabidopsis thaliana (Linn.) Heynh; ■: 大豆 Glycine max (Linn.) Merr. 分支上的 数值表示自展支持率 The values on the branches represent the bootstrap support rates.

图 3 绿豆、拟南芥和大豆 ADHs 蛋白的 NJ 系统发育树 Fig. 3 NJ phylogenetic tree of ADHs of *Vigna radiata* (Linn.) Wilczek, *Arabidopsis thaliana* (Linn.) Heynh., and *Glycine max* (Linn.) Merr.

GmADH23、GmADH29 和 GmADH31;分支 II 包含 VrADH6 和 GmADH1;分支 II 包含其余的 46 个 ADHs。分支III可进一步分为3个亚组,每个亚组均 包含 3 种植物的 ADHs。其中,亚组 III1包含 VrADH14、VrADH15、AtADH4、AtADH6、AtADH7、 AtADH8 以及9个 GmADHs;亚组 III2包含 VrADH10、 VrADH11、VrADH12、AtADH2、AtADH3 以及6 个 GmADHs;亚组 III3包含 VrADH2、VrADH3、VrADH4、 VrADH5、VrADH7、VrADH8、VrADH9、VrADH13、 AtADH1、AtADH5 以及10个 GmADHs。总体而言,绿 豆与大豆的 ADHs 间具有更近的亲缘关系。

2.1.4 ADHs 蛋白结构域分析 绿豆、拟南芥和大豆的 ADHs 蛋白结构域见图 4。由图 4 可见: ADHs 蛋白具有 3 种结构域,分别为 ADH_N、ADH_zinc_N 和 ADH_zinc_N_2,绿豆、拟南芥和大豆的 ADHs 蛋白的结构域存在差异,多数 ADHs 蛋白仅含 ADH_N 和 ADH_zinc_N 结构域,而含有 3 个结构域的 ADHs 仅占 10.9%。

在绿豆的15个 VrADHs 蛋白中,仅 VrADH10 含

有 1 个结构域(ADH_N 结构域),其他 14 个 VrADHs 均含有 ADH_N 和 ADH_zinc_N 结构域,且 VrADH1 还含有 ADH_zinc_N_2 结构域。在大豆的 32 个 GmADHs 蛋白中,GmADH28 不包含结构域, GmADH15 和 GmADH24 仅含有 ADH_N 结构域,其 他 GmADHs 均含有 ADH_N 和 ADH_zinc_N 结构域, 且 GmADH21、GmADH22、GmADH23、GmADH29 和 GmADH31 还含有 ADH_zinc_N_2 结构域。而在拟南 芥的 8 个 AtADHs 蛋白中,除 AtADH5 和 AtADH5 各 自仅包含 ADH_N 和 ADH_zinc_N 1 个结构域外,其 他 6 个 AtADHs 均含有 ADH_N 和 ADH_zinc_N 结构 域,但 AtADHs 均不包含 ADH_zinc_N_2 结构域。

■: ADH_N 结构域 ADH_N domain; ■: ADH_zinc_N 结构域 ADH_zinc_ N domain; ■: ADH_zinc_N_2 结构域 ADH_zinc_N_2 domain. Vr: 绿豆 Vigna radiata (Linn.) R. Wilczek; At: 拟南芥 Arabidopsis thaliana (Linn.) Heynh.; Gm: 大豆 Clycine max (Linn.) Merr.

图 4 绿豆、拟南芥和大豆 ADHs 蛋白结构域分布

Fig. 4 Distribution of protein domains of ADHs in *Vigna radiata* (Linn.) Wilczek, *Arabidopsis thaliana* (Linn.) Heynh., and *Glycine* max (Linn.) Merr.

2.2 Cd 胁迫条件下绿豆幼苗 VrADHs 基因的表达 量及 ADH 酶活性变化

2.2.1 正常条件下绿豆幼苗不同部位 ADHs 基因的 表达谱 依据 log₂TPM 绘制 15 个 VrADHs 基因在绿 豆幼苗根、茎和叶片中的表达谱(图 5),结果表明:在 15 个 VrADHs 基因中, VrADH7、VrADH8 和 VrADH10 在幼苗的根、茎和叶片中均未表达,而其他 12 个 VrADHs 基因均有不同水平的表达,且相对表达量因 生长时间不同而异,并表现出不同的变化趋势。

在幼苗根中,表达量最高的基因为 VrADH1,其相 对表达量(TPM值)在培养1、5和9d分别达到 282.95、164.21和161.47。在幼苗茎中,表达量最高 的基因为 VrADH3,其 TPM值在培养1、5和9d分别 为4523.37、229.39和148.28;VrADH6基因的相对表 达量在培养9d也达到较高水平,TPM值为199.25。 在幼苗叶片中,相对表达量最高的基因为 VrADH14, 其 TPM值在培养1、5和9d分别为141.29、118.86和 88.93。总体上,在15个 VrADHs基因中,仅 VrADH6 基因在根、茎和叶片中表达量均较高,且在幼苗的不 同生长时间该基因的相对表达量均维持在较高水平。

R1, R5, R9: 分别为培养 1、5 和 9 d 的幼苗根 Seedling roots cultured for 1, 5 and 9 d, respectively; S1, S5, S9: 分别为培养 1、5 和 9 d 的幼 苗茎 Seedling stems cultured for 1, 5 and 9 d, respectively; L1, L5, L9: 分别为培养 1、5 和 9 d 的幼苗叶片 Seedling leaves cultured for 1, 5 and 9 d, respectively.

图 5 正常条件下绿豆幼苗根、茎和叶片中 VrADHs 基因的表达谱 Fig. 5 Expression profiles of VrADHs of roots, stems, and leaves of Vigna radiata (Linn.) Wilczek seedlings under normal condition 此外,一些 VrADHs 基因的表达也表现出组织特 异性。其中, VrADH12 基因在根中低水平表达, VrADH2 基因在根和叶片中低水平表达, VrADH4 基因 在根和茎中低水平表达。聚类分析结果表明:依据相 对表达量可将 15 个基因分为 2 组,其中 VrADH2、 VrADH4、VrADH7、VrADH8、VrADH9、VrADH10 和 VrADH12 基因聚为一组,这些基因在绿豆的根、茎和叶片中不表 达或表达水平较低;其他 8 个基因聚为另一组,这些基 因在绿豆的根、茎和叶片中均有不同水平的表达。

2.2.2 Cd 胁迫条件下绿豆幼苗 VrADHs 基因的表达 量变化 在 100 μmol·L⁻¹Cd 胁迫下绿豆幼苗根、茎 和叶片中 VrADHs 基因相对表达量的变化分别见表 2、表 3 和表 4。结果表明:在 Cd 胁迫和对照条件下, 在 15 个 VrADHs 基因中, VrADH7、VrADH8 和 VrADH10 基因在幼苗的根、茎和叶片中均未表达;Cd 胁迫处理 可明显影响绿豆幼苗根、茎和叶片中 VrADHs 基因的 表达水平,且相对表达量因幼苗生长时间的不同而 异;与对照相比,Cd 胁迫条件下多数 VrADHs 基因在 绿豆幼苗根、茎和叶片中的表达量上调。

由表2可见:Cd处理1d,除 VrADH1、VrADH9和 VrADH12 基因外,幼苗根中其他基因的表达水平均较 对照上调;其中, VrADH2、VrADH4、VrADH5 和 VrADH13 基因的相对表达量分别较对照提高了 52.82、90.39、1.46 和 1.05 倍, 而 VrADH1 和 VrADH12 基因的相对表达量则分别较对照降低了 55.44% 和 87.84%,差异均达显著(P<0.05)水平。Cd处理5d, VrADH3、VrADH5、VrADH6、VrADH12 和 VrADH13 基因 的表达水平均较对照下调,而其他7个基因的表达水 平均 较 对 照 上 调; 其 中, VrADH4、VrADH14 和 VrADH15 基因的相对表达量分别较对照提高了 4.54、 454.22 和 43.18 倍, VrADH6 和 VrADH12 基因的相对 表达量分别较对照降低了 29.39% 和 81.40%, 差异均 达显著水平。Cd 处理 9 d, VrADH1、VrADH2、 VrADH3、VrADH6和 VrADH12 基因的表达水平均较对 照下调,而其他7个基因的表达水平均较对照上调, 其中, VrADH9、VrADH14 和 VrADH15 基因的相对表达 量分别较对照提高了 4.45、16.68 和 2.70 倍, VrADH12 基因的相对表达量较对照降低了 89.78%,差异均达 显著水平。

由表 3 可见:Cd 处理 1 d,除 VrADH1、VrADH11 和 VrADH15 基因外,幼苗茎中其他基因的表达水平 均较对照上调;其中,VrADH2、VrADH4、VrADH6 和 VrADH14 基因的相对表达量分别较对照提高了 0.88、 1.15、0.31 和 0.42 倍,差异均达显著水平;其他基因的 相对表达量高于或低于对照,但均无显著差异。Cd 处理 5 d,仅 VrADH11 基因的表达水平较对照下调, 其他基因的表达水平均较对照上调;其中,VrADH1、 VrADH3、VrADH4、VrADH12、VrADH13 和 VrADH14 基 因的相对表达量分别较对照提高了 1.01、2.91、7.32、 19.00、0.39 和 6.65 倍,差异均达显著水平。Cd 处理 9 d,仅 VrADH6、VrADH13 和 VrADH15 基因的表达水 平较对照下调,其他基因的表达水平均较对照上调; 其中, VrADH1、VrADH2、VrADH3、VrADH5、VrADH12和 VrADH14基因的相对表达量分别较对照提高了1.21、 3.63、1.00、1.94、23.00和12.04倍,差异均达显著水平。

由表 4 可见:在对照组中,叶片中 VrADH12 基因 在处理 1 和 5 d 均不表达;在 Cd 处理组中,该基因在 处理 1 d 也不表达,但在处理 5 和 9 d 低水平表达。 Cd 处理 1 d,除 VrADH2、VrADH11、VrADH14 和 VrADH15 基因外,幼苗叶片中其他基因的表达水平均 较对照上调;其中,VrADH2、VrADH14 和 VrADH15 基因 的相对表达量分别较对照降低了 80.28%、30.95%和

表 2 Cd 胁迫下绿豆幼苗根中 VrADHs 基因相对表达量的变化(\overline{X} ±SE)¹⁾ Table 2 Changes of relative expression levels of VrADHs of roots of Vigna radiata (Linn.) Wilczek seedlings under Cd stress (\overline{X} ±SE)¹⁾

			8	. ,	e	1 <i>j</i>
基因 Gene	处理1d的相对表达量 Relative expression level of treatment for 1d		处理 5 d 的相对表达量 Relative expression level of treatment for 5 d		处理9d的相对表达量 Relative expression level of treatment for9d	
	对照组 The control group	Cd 处理组 Cd treatment group	对照 <u>组</u> The control group	Cd 处理组 Cd treatment group	对照组 The control group	Cd 处理组 Cd treatment group
VrADH1	282.95±26.02a	$126.09{\pm}6.84\mathrm{b}$	164.21±38.06a	196.97±15.85a	161.47±39.62a	153.84±20.69a
VrADH2	$3.30 \pm 0.88 \mathrm{b}$	177.60±98.98a	2.86±0.40a	4.52±1.09a	2.63±0.75a	2.12±0.48a
VrADH3	30.77±10.28a	58.10±38.76a	7.63±1.53a	$3.20 \pm 2.14a$	$6.99 \pm 2.43 a$	$2.26 \pm 0.44a$
VrADH4	$2.87{\pm}0.64{\rm b}$	255.94±102.40a	$0.97{\pm}0.14{\rm b}$	5.37±0.23a	0.73±0.50a	1.41±0.70a
VrADH5	$187.63 \pm 31.57 \mathrm{b}$	461.42±72.38a	119.42±33.12a	85.83±22.20a	$66.20 \pm 26.09a$	116.78±23.93a
VrADH6	124.11±7.76a	141.28±11.01a	106.16±4.61a	$74.96{\pm}9.28{\rm b}$	100.96±7.42a	88.92±9.79a
VrADH9	1.60±0.13a	1.35±0.31a	1.73±0.29a	2.53±0.65a	$1.08 \pm 0.19 \mathrm{b}$	4.88±1.24a
VrADH11	44.52±4.11a	44.52±4.17a	19.99±3.53a	22.14±3.99a	20.19±2.85a	24.80±6.13a
VrADH12	34.47±6.15a	$4.19 \pm 0.49 \mathrm{b}$	11.56±4.38a	$2.15 \pm 0.69 \mathrm{b}$	12.33±9.25a	$1.26 \pm 0.41 \mathrm{b}$
VrADH13	$15.00{\pm}0.68{\rm b}$	30.71±3.81a	17.47±1.78a	16.02±4.37a	21.23±3.29a	25.42±4.88a
VrADH14	51.56±7.67a	78.35±13.32a	$35.28 \pm 4.43 \mathrm{b}$	1 596.42±144.42a	$56.57{\pm}16.23{\rm b}$	943.91±77.09a
VrADH15	8.77±0.63a	13.23±1.85a	$7.63{\pm}1.04{\rm b}$	31.82±2.38a	$11.34 \pm 2.31 \mathrm{b}$	30.72±3.79a

¹⁾ 同行中不同小写字母表示同一处理时间对照组和 Cd 处理组间的基因相对表达量差异显著(P<0.05) Different lowercases in the same row indicate the significant (P<0.05) difference in relative expression levels of genes between the control and Cd treatment groups at the same treatment time.

表 3 Cd 胁迫下绿豆幼苗茎中 VrADHs 基因相对表达量的变化 ($\overline{X}\pm SE$)¹⁾ Table 3 Changes of relative expression levels of VrADHs of stems of Vigna radiata (Linn.) Wilczek seedlings under Cd stress ($\overline{X}\pm SE$)¹⁾

基因	处理1d的相对表达量		处理5d的相对表达量		处理9d的相对表达量	
	Belative expression level of treatment for 1 d		Belative expression level of treatment for 5 d		Relative expression level of treatment for 9 d	
Gene	对照组	Cd 处理组	对照组	Cd 处理组	对照组	Cd 处理组
	The control group	Cd treatment group	The control group	Cd treatment group	The control group	Cd treatment group
VrADH1	30.77±3.04a	30.45±4.27a	$21.03{\pm}0.68{\rm b}$	42.31±2.60a	$22.42{\pm}1.04\mathrm{b}$	49.46±3.46a
VrADH2	$0.26 \pm 0.05 \mathrm{b}$	$0.49 \pm 0.05 a$	0.07±0.02a	0.11±0.06a	$0.08 \pm 0.02 \mathrm{b}$	0.37±0.07a
VrADH3	4 523.37±732.90a	6 563.28±1 948.20a	$229.39 {\pm} 19.05 {\rm b}$	896.63±52.96a	$148.28 \pm 46.46 \mathrm{b}$	297.28±53.64a
VrADH4	$1.52 \pm 0.37 \mathrm{b}$	$3.27 \pm 0.40a$	$0.98 \pm 0.03 \mathrm{b}$	8.15±4.04a	$0.44 \pm 0.03 a$	2.52±1.68a
VrADH5	149.93±17.51a	256.08±34.46a	$125.42 \pm 14.82a$	217.98±36.33a	$101.20 \pm 19.52 \mathrm{b}$	297.30±33.78a
VrADH6	$195.57{\pm}7.80\mathrm{b}$	256.59±12.96a	179.65±6.33a	184.36±4.73a	199.25±10.42a	170.76±4.20a
VrADH9	18.17±0.96a	$21.69 \pm 4.28a$	7.67±0.77a	8.28±1.23a	$3.84 \pm 0.42a$	6.65±0.88a
VrADH11	70.24±9.93a	$67.60 \pm 5.23a$	50.51±1.47a	50.31±0.96a	33.11±2.59a	43.39±2.51a
VrADH12	0.03±0.03a	$0.09 \pm 0.05 a$	$0.03{\pm}0.02{\rm b}$	0.60 ± 0.04 a	$0.05 \pm 0.00 \mathrm{b}$	1.20±0.22a
VrADH13	19.47±0.15a	24.44±2.50a	$21.95{\pm}2.44\mathrm{b}$	30.62±1.91a	37.53±1.91a	34.76±2.22a
VrADH14	$22.06{\pm}1.27\mathrm{b}$	31.39±2.91a	$16.32 \pm 2.43 \mathrm{b}$	124.91±15.69a	$13.89 \pm 3.45 \mathrm{b}$	181.17±10.28a
VrADH15	12.57±0.86a	$10.68 \pm 0.80a$	7.88±0.52a	10.04±0.28a	14.33±1.13a	9.97±1.39a

¹⁾ 同行中不同小写字母表示同一处理时间对照组和 Cd 处理组间的基因相对表达量差异显著(P<0.05) Different lowercases in the same row indicate the significant (P<0.05) difference in relative expression levels of genes between the control and Cd treatment groups at the same treatment time.

基因 Gene	处理1d的相对表达量 Relative expression level of treatment for 1d		处理 5 d 的相对表达量 Relative expression level of treatment for 5 d		处理9d的相对表达量 Relative expression level of treatment for 9d	
	对照组 The control group	Cd 处理组 Cd treatment group	对照组 The control group	Cd 处理组 Cd treatment group	对照组 The control group	Cd 处理组 Cd treatment group
VrADH1	31.92±1.60a	36.57±2.77a	$35.26 \pm 2.34 \mathrm{b}$	76.77±6.24a	$34.40 \pm 2.74 \mathrm{b}$	83.19±26.00a
VrADH2	0.71±0.06a	$0.14 \pm 0.02 \mathrm{b}$	$0.50 \pm 0.05 a$	$0.09 \pm 0.05 \mathrm{b}$	0.68±0.30a	0.14±0.05a
VrADH3	93.24±9.85a	190.77±46.48a	$9.82 \pm 3.90 \mathrm{b}$	394.35±88.93a	$5.62 \pm 2.76 \mathrm{b}$	432.33±158.13a
VrADH4	0.11±0.01a	0.15±0.09a	0.04±0.09a	$0.08 \pm 0.06a$	$0.05 \pm 0.03 a$	0.03±0.03a
VrADH5	$6.00 \pm 2.74a$	6.80 ± 3.74 a	11.13±3.74a	23.68±14.24a	6.12±3.42a	13.10±3.08a
VrADH6	64.08±2.19a	64.65±5.25a	87.15±8.13a	64.66±6.58a	92.66±7.26a	74.86±13.38a
VrADH9	2.09±0.25a	2.27±0.24a	1.75±0.33a	0.82±0.13a	2.58±0.27a	1.99±0.39a
VrADH11	12.31±0.76a	8.25±1.26a	13.74±2.23a	$15.04 \pm 2.71a$	$6.21{\pm}0.84\mathrm{b}$	11.92±1.51a
VrADH12	_	—	_	$0.03 \pm 0.03 a$	_	0.15±0.03a
VrADH13	5.20±0.34a	7.38±0.91a	$5.45 \pm 0.27 \mathrm{b}$	8.16±0.49a	$7.09 \pm 0.67 a$	$7.47 \pm 0.42a$
VrADH14	141.29±6.85a	$97.56 \pm 11.33 \mathrm{b}$	118.86±4.02a	124.07±7.37a	88.93±22.14a	86.61±16.26a
VrADH15	17.33±1.07a	$12.11\pm0.32b$	10.50±0.66a	9.33±0.29a	10.70±0.88a	12.18±1.08a

表 4 Cd 胁迫下绿豆幼苗叶片中 VrADHs 基因相对表达量的变化($\overline{X}\pm SE$)¹⁾ Table 4 Changes of relative expression levels of VrADHs of leaves of Vigna radiata (Linn.) Wilczek seedlings under Cd stress ($\overline{X}\pm SE$)¹⁾

¹⁾同行中不同小写字母表示同一处理时间对照组和 Cd 处理组间的基因相对表达量差异显著(P<0.05) Different lowercases in the same row indicate the significant (P<0.05) difference in relative expression levels of genes between the control and Cd treatment groups at the same treatment time. —: 未测出 Undetected.

—: 木树山 Undetected.

30.12%,差异均达显著水平。Cd处理5d,VrADH2、 VrADH6、VrADH9和VrADH15基因的表达水平均较对 照下调,而其他基因的表达水平均较对照上调;其中, VrADH1、VrADH3和VrADH13基因的相对表达量分别 较对照提高了1.18、39.16和0.50倍,VrADH2基因的相 对表达量较对照降低了82.00%,差异均达显著水平。 Cd处理9d,VrADH2、VrADH4、VrADH6、VrADH9和 VrADH14基因的表达水平均较对照下调,其他基因的 表达水平均较对照上调;其中,VrADH1、VrADH3和 VrADH11基因的相对表达量分别较对照提高了1.42、 75.93和0.92倍,VrADH2基因的相对表达量较对照降 低了79.41%,差异均达显著水平。 2.2.3 Cd 胁迫条件下绿豆幼苗 ADH 酶活性变化 经 100 μmol·L⁻¹ Cd 处理 1~9 d 绿豆幼苗根、茎和叶 片中 ADH 酶活性的变化见图 6。结果表明:在对照 和 Cd 胁迫条件下,绿豆幼苗根和茎中的 ADH 酶活 性随处理时间的延长总体呈下降趋势,且在对照条件 下叶片中的 ADH 酶活性也随处理时间的延长总体呈 下降趋势;但在 Cd 胁迫条件下,叶片的 ADH 酶活性 则波动变化,且在处理 3~9 d 均高于处理 1 d。

幼苗根中 ADH 酶活性在 Cd 处理 1、3、5 和 7 d 均较对照不同程度升高,但在 Cd 处理 9 d 接近对照 水平;其中,Cd 处理 3 和 9 d ADH 酶活性分别较对照 升高了 27.68%和 89.50%,差异均达显著水平。

L: 州派组 The control group; L: Cu 处理组 Cu treatment group.

不同小写字母表示同一处理时间对照组和 Cd 处理组间 ADH 酶活性差异显著(P<0.05) Different lowercases indicate the significant (P<0.05) difference in ADH enzyme activities between the control and Cd treatment groups at the same treatment time.

图 6 Cd 胁迫下绿豆幼苗根(A)、茎(B)和叶片(C)中 ADH 酶活性的变化

Fig. 6 Changes of ADH enzyme activities of roots (A), stems (B), and leaves (C) of Vigna radiata (Linn.) Wilczek seedlings under Cd stress

幼苗茎中 ADH 酶活性在 Cd 处理 1 d 略低于对 照,但在 Cd 处理 3、5、7 和 9 d 则不同程度高于对照; 其中,Cd 处理 3、5 和 9 d ADH 酶活性分别较对照升 高了 48.60%、47.05%和 65.30%,且在 Cd 处理 5 和 9 d与对照差异显著。

幼苗叶片中 ADH 酶活性在 Cd 处理 1 d 显著低 于对照,而在 Cd 处理 3、5、7 和 9 d 均不同程度高于 对照;其中,Cd 处理 3 和 9 d ADH 酶活性较对照分别 升高了 54.20%和 75.90%,差异达显著水平。

3 讨论和结论

对比绿豆、拟南芥和大豆的 ADHs 基因,3 种植物 的 ADHs 基因结构相似度较高,且大部分基因编码的 氨基酸序列具有相似的 motif, 如绿豆的 VrADH1 基因 与大豆的 GmADH21、GmADH22、GmADH23、GmADH29 和 GmADH31 基因编码的氨基酸序列均包含8 个相同 的 motif, 且均缺少 motif5 和 motif7。这一结果部分佐 证了绿豆 VrADHs 基因与同科植物大豆的 GmADHs 基 因具有相近的结构。不同植物的 ADHs 基因也存在 一定差异,例如:绿豆的 VrADH10 基因编码的氨基酸 序列仅包含 motif3, 大豆的 GmADH28 基因编码的氨 基酸序列仅含 motif1, GmADH26 基因编码的氨基酸 序列包含 motif1、motif9、motif3 和 motif5, GmADH15 和 GmADH24 基因编码的氨基酸序列则包含 motif1 和 motif9。植物 ADHs 基因家族祖先的标准内含子数量 为9个,分布在染色体上大致相同的位置^[24],植物 ADHs 基因在进化过程中通过基因重复获得新的底物 特异性[25],且其内含子的长度、数量和分布通常为该 基因的进化奠定了基础。绿豆的 VrADHs 基因含有 7~9个内含子,其内含子数量差异性可能与基因的串 联排列和相互作用有关^[26]。

绿豆不同 ADHs 蛋白的相对分子质量、等电点、 亲水性系数等理化特征具有一定差异性,根据系统发 育树可将绿豆、大豆和拟南芥的 ADHs 分为 3 个分 支,绿豆的 VrADH1 和大豆的 5 个 GmADHs 聚为分 支 I,绿豆的 VrADH6 和大豆的 GmADH1 聚为分支 II,绿豆和大豆的其余 25 个 ADHs 与拟南芥的所有 ADHs 聚为分支III,这一方面表明非同源基因重复事 件的发生^[27],另一方面佐证了绿豆和大豆 ADHs 具 有更近的亲缘关系。另外,前人通过聚类分析分别将 小麦(*Triticum aestivum* Linn.)^[28]和甜瓜^[29]的 ADHs

聚为长链、中链和短链3类,与本研究结果有一定差 异,可能与基因鉴定和筛选的方法不同有关。从绿豆 VrADHs 的氨基酸序列长度看,仅 VrADH10 属于短 链脱氢酶, VrADH1、VrADH2、VrADH7、VrADH11、 VrADH12 和 VrADH15 属于长链脱氢酶,其余 VrADHs 属于中链脱氢酶;短链 ADHs 的辅酶结合区 缺乏锌和半胱氨酸残基,且仅有少数短链 ADHs 的功 能已知^[30],因此,绿豆 VrADH10 的具体功能有待进 一步研究。此外,绿豆的所有 VrADHs 都包含 ADH_ N 结构域, 且除 VrADH10 外, 其他 VrADHs 还包含 ADH_zinc_N 结构域,说明多数 ADHs 具有基本相同 的结构域,这一现象在其他植物的 ADHs 研究中得到 证实^[31]。此外, 拟南芥的 AtADHs 中不存在 ADH_ zinc_N_2 结构域,但绿豆的 VrADH1 和大豆的 5 个 GmADHs 中却存在此结构域,这一结果与"绿豆和大 豆的 ADHs 具有更近的亲缘关系"相印证。

在绿豆的 15 个 VrADHs 基因中, 12 个基因在根、 茎和叶片中有不同水平表达, 且 VrADH1、VrADH3、 VrADH5、VrADH6 和 VrADH14 基因在根、茎和叶片中 的表达水平均较高, VrADH9、VrADH15、VrADH11 和 VrADH13 基因表达水平较低, 而 VrADH7、VrADH8 和 VrADH10 基因在正常和 Cd 胁迫条件下均不表达。 VrADH7 和 VrADH8 基因的表达产物是 VrADH6 基因 的转录变体(transcript variant), 主要存在于哺乳动物 中^[32]; VrADH10 基因与乙醇代谢调控和乙醛合成有 关, 且参与的代谢途径主要发生在酵母中, 在高等植 物中仅在水淹胁迫条件下表达^[33,34]。这可能是 3 个 基因在绿豆不同部位中不表达的主要原因。

ADHs 参与植物的基本代谢过程^[35],不同基因在 植物的不同发育阶段和不同组织中具有各自的功 能^[29]。从表达水平看,Cd 胁迫后绿豆根中 VrADH2、 VrADH4 和 VrADH14 基因的表达水平较高,茎中 VrADH3 基因的表达水平较高,叶片中 VrADH1、 VrADH3 和 VrADH5 基因的表达水平较高,表明 Cd 胁 迫后 VrADHs 基因的表达具有组织特异性。Cd 胁迫 可导致绿豆根、茎和叶片中部分 VrADHs 基因的表达 水平大幅升高。例如:Cd 处理1d,与对照相比,根中 VrADH2、VrADH4、VrADH5 和 VrADH13 基因以及茎中 VrADH2、VrADH4、VrADH5 和 VrADH13 基因以及茎中 VrADH2、VrADH4、VrADH6 和 VrADH14 基因的相对表达量无 显著升高;Cd 处理5d,与对照相比,根中 VrADH4、 VrADH14 和 VrADH15 基因以及叶片中 VrADH1、 VrADH3、VrADH5 和 VrADH13 基因的相对表达量显著 升高,茎中 VrADH1、VrADH3、VrADH4、VrADH12、 VrADH13 和 VrADH14 基因的相对表达量也显著升 高;Cd处理9d,与对照相比,根中 VrADH9、VrADH14 和 VrADH15 基因以及叶片中 VrADH1、VrADH3、 VrADH5 和 VrADH11 基因的相对表达量显著升高,茎 中 VrADH1、VrADH2、VrADH3、VrADH4、VrADH5、 VrADH12 和 VrADH14 基因的相对表达量也显著升 高。此外,Cd 胁迫也导致绿豆根、茎和叶片中部分 VrADHs 基因的表达水平降低。例如:Cd处理1、5 和 9d,根中 VrADH12 基因和叶片中 VrADH2 基因的相 对表达量均较对照显著降低。这些数据均说明在绿 豆幼苗的不同器官及不同处理时间,各 VrADHs 基因 对 Cd 胁迫的响应程度不同,说明 ADHs 基因的表达 具有功能冗余性和表达多样性。

由 ADHs 酶活性分析结果可见:Cd 胁迫导致绿 豆根、茎和叶片中 ADH 酶活性升高或降低,在某些处 理时间表现极显著。Cd 处理 1 d, 根和茎中 ADH 酶 活均无显著变化,而叶片中 ADH 酶活性则显著降低, 可能与叶片中 VrADH2、VrADH14 和 VrADH15 基因的 表达量降低有关;Cd处理3d,根、茎和叶片中ADH 酶活性升高,可能与VrADH2、VrADH4和VrADH5基因 的表达量升高有关:Cd处理5和9d,根、茎和叶片中 均有2个以上VrADHs 基因的表达量显著升高,根、茎 和叶片中 ADH 酶活性也不同程度升高。显然, Cd 胁 迫导致绿豆幼苗根、茎和叶片中 VrADHs 基因表达水 平的升高或降低,而不同器官中以及不同处理时间 ADH 酶活性也有升有降,这一现象进一步佐证了 ADHs 基因参与绿豆幼苗对 Cd 胁迫的响应。在 Cd 胁迫初期,绿豆幼苗进行有氧呼吸,体内尚未积累大 量的乳酸和乙醇等代谢物质[35];但随胁迫时间的延 长,为了维持机体基本的代谢活动,幼苗开始进行无 氧呼吸,此时丙酮酸没有被完全氧化,并在产生乳酸 和乙醇的同时释放少量能量,故绿豆幼苗的根、茎和 叶片中相应的 VrADHs 基因高水平表达,进而使 ADH 酶活性升高,提升糖酵解途径的代谢活性,以减轻这 些代谢产物对植物细胞的毒害作用[36,37]。

在绿豆幼苗的生长过程中以及在不同器官中,绿 豆的 15 个 VrADHs 基因的表达特性均可呈现不同的 变化规律,特别是经过 Cd 胁迫处理后,不同 VrADHs 基因的表达水平上调或下调,那么,在应对 Cd 胁迫 的过程中,有哪些 VrADHs 基因起到关键作用,有哪些 VrADHs 基因对绿豆的 ADH 酶活性有显著调控作用, 其规律性和响应机制如何,这些问题仍有待进一步研究。此外,本研究中有少部分 VrADHs 基因的相对表 达量数据离散程度很大,对方差分析结果可能有一定 的影响,导致部分数据的显著性检验结果不准确,但 这部分数据并不影响本文的整体结果。

综合分析结果表明:绿豆基因组含有 15 个 VrADHs 基因,具备 ADH 家族基因的基本特征,其基 因结构与拟南芥和大豆的 ADHs 基因结构相似;与拟 南芥 AtADHs 的氨基酸序列相比,绿豆 VrADHs 与大 豆 GmADHs 的氨基酸序列具有更近的亲缘关系。在 绿豆的 15 个 VrADHs 基因中,有 12 个 VrADHs 基因可 在根、茎和叶片中不同程度表达,但表达水平因生长 时间而异;在 Cd 胁迫条件下,绿豆幼苗根、茎和叶片 中 12 个 VrADHs 基因的表达水平上调或下调,但多数 基因的表达水平较对照上调,且在不同处理时间幼苗 根、茎和叶片中的 ADH 酶活性总体上也均高于对照, 显示绿豆 ADH 酶活性的升高与某些 VrADHs 基因的 表达水平上调有关,表明绿豆的某些 VrADHs 基因参 与了绿豆对 Cd 胁迫的响应过程。

参考文献:

- LADENSTEIN R, WINBERG J O, BENACH J. Structure-function relationships in short-chain alcohol dehydrogenases [J]. Cellular and Molecular Life Sciences, 2008, 65(24): 3918-3935.
- [2] ALKA K, WINDLE H J, CORNALLY D, et al. A short chain NAD(H)-dependent alcohol dehydrogenase (HpSCADH) from *Helicobacter pylori*: a role in growth under neutral and acidic conditions [J]. International Journal of Biochemistry and Cell Biology, 2013, 45(7): 1347-1355.
- [3] BOOMINATHAN R, DORAN P M. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, *Thlaspi caerulescens* [J]. Biotechnology and Bioengineering, 2003, 83(2): 158-167.
- [4] STROMMER J. The plant ADH gene family[J]. The Plant Journal, 2011, 66(1): 128-142.
- [5] PETERS J S, FRENKEL C. Relationship between alcohol dehydrogenase activity and low-temperature in two maize genotypes, Silverado F₁ and Adh1-Adh2-doubly null[J]. Plant Physiology and Biochemistry, 2004, 42(10): 841-846.
- [6] SPEIRS J, LEE E, HOLT K, et al. Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols [J]. Plant Physiology, 1998, 117(3): 1047-1058.
- [7] MANRÍQUEZ D, EI-SHARKAWY I, FLORES F B, et al. Two highly divergent alcohol dehydrogenases of melon exhibit fruit ripening-specific expression and distinct biochemical characteristics
 [J]. Plant Molecular Biology, 2006, 61(4/5): 675-685.

- [8] SINGH R K, SANE V A, MISRA A, et al. Differential expression of the mango alcohol dehydrogenase gene family during ripening[J]. Phytochemistry, 2010, 71(13): 1485-1494.
- [9] ZENG W W, QIAO X, LI Q H, et al. Genome-wide identification and comparative analysis of the *ADH* gene family in Chinese white pear (*Pyrus bretschneideri*) and other Rosaceae species [J]. Genomics, 2020, 112(5): 3484-3496.
- [10] SU W H, REN Y J, WANG D J, et al. The alcohol dehydrogenase gene family in sugarcane and its involvement in cold stress regulation[J]. BMC Genomics, 2020, 21(1): 521.
- [11] YANG C Y. Hydrogen peroxide controls transcriptional responses of ERF73/HRE1 and ADH1 via modulation of ethylene signaling during hypoxic stress[J]. Planta, 2014, 239(4): 877-885.
- [12] FERL R J, LAUGHNER B H. In vivo detection of regulatory factor binding sites of Arabidopsis thaliana Adh [J]. Plant Molecular Biology, 1989, 12: 357–366.
- [13] PAPDI C, ÁBRAHÁM E, JOSEPH M P, et al. Functional identification of Arabidopsis stress regulatory genes using the controlled cDNA overexpression system [J]. Plant Physiology, 2008, 147(2): 528-542.
- [14] CHEN F F, WANG P, AN Y, et al. Structural insight into the conformational change of alcohol dehydrogenase from *Arabidopsis thaliana* L. during coenzyme binding[J]. Biochimie, 2015, 108: 33-39.
- [15] KOMATSU S, THIBAUT D, HIRAGA S, et al. Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots [J]. Plant Molecular Biology, 2011, 77: 309-322.
- [16] SAIRAM R K, DHARMAR K, CHINNUSAMY V, et al. Waterlogging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean (*Vigna radiata*) [J]. Journal of Plant Physiology, 2009, 166 (6): 602-616.
- HAN Z X, WEI X, WAN D J, et al. Effect of molybdenum on plant physiology and cadmium uptake and translocation in rape (*Brassica napus* L.) under different levels of cadmium stress [J]. International Journal of Environmental Research and Public Health, 2020, 17(7): 2355.
- [18] HY S L, CHEN Q H, GUO F, et al. (Z)-3-Hexen-1-ol accumulation enhances hyperosmotic stress tolerance in *Camellia* sinensis[J]. Plant Molecular Biology, 2020, 103: 287-302.
- [19] 陈文荣,马旭佳,郭燕萍,等. 镉污染土壤低吸收水稻阻隔技术研究及应用[J]. 浙江师范大学学报,2021,44(4): 420-428.
- [20] 黑泽文,向慧敏,章家恩,等.豆科植物修复土壤重金属污染研究进展[J].生态科学,2019,38(3);218-224.
- [21] LENG Y, LI Y, WEN Y, et al. Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments [J]. Ecotoxicology and Environmental Safety, 2020, 204: 111098.
- [22] LI S W, SHI R F, LENG Y, et al. Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings [J]. BMC Genomics,

2016, 17(1): 43.

- [23] 施海涛. 植物逆境生理学实验指导[M]. 北京:科学出版社, 2016: 89-90.
- [24] SMALL R L, WENDEL J F. Copy number lability and evolutionary dynamics of the Adh gene family in diploid and tetraploid cotton (Gossypium)[J]. Genetics, 2000, 155(4): 1913-1926.
- [25] DOLFERUS R, OSTERMAN J C, PEACOCK W J, et al. Cloning of the Arabidopsis and rice formaldehyde dehydrogenase genes: implications for the origin of plant ADH enzymes [J]. Genetics, 1997, 146(3): 1131-1141.
- [26] MILLAR A A, DENNIS E S. Protein synthesis during oxygen deprivation in cotton [J]. Functional Plant Biology, 1996, 23: 341-348.
- [27] THOMPSON C E, SALZANO F M, DE SOUZA O N, et al. Sequence and structural aspects of the functional diversification of plant alcohol dehydrogenases[J]. Gene, 2007, 396(1): 108–115.
- [28] SHEN C W, YUAN J P, OU X Q, et al. Genome-wide identification of alcohol dehydrogenase (ADH) gene family under waterlogging stress in wheat (*Triticum aestivum*) [J]. PeerJ, 2021, 9: e11861.
- [29] JIN Y Z, ZHANG C, LIU W, et al. The alcohol dehydrogenase gene family in melon (*Cucumis melo L.*): bioinformatic analysis and expression patterns [J]. Frontiers in Plant Science, 2016, 7: 670.
- [30] MOUMMOU H, TONFACK L B, CHERVIN C, et al. Functional characterization of SlscADH1, a fruit-ripening-associated shortchain alcohol dehydrogenase of tomato [J]. Journal of Plant Physiology, 2012, 169(15): 1435-1444.
- [31] WANG Z Q, GU C S, XUAN L, et al. Identification of suitable reference genes in *Taxodium* 'Zhongshanshan' under abiotic stresses[J]. Trees, 2017, 31: 1519–1530.
- [32] ESTONIUS M, SVENSSON S, HÖÖG J O. Alcohol dehydrogenase in human tissues: localisation of transcripts coding for five classes of the enzyme[J]. FEBS Letters, 1996, 397(2/3): 338-342.
- [33] GASS N, GLAGOTSKAIA T, MELLEMA S, et al. Pyruvate decarboxylase provides growing pollen tubes with a competitive advantage in *Petunia*[J]. Plant Cell, 2005, 17(8): 2355-2368.
- [34] ISMOND K P, DOLFERUS R, DE PAUW M, et al. Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway [J]. Plant Physiology, 2003, 132(3): 1292-1302.
- [35] MUSTROPH A, ALBRECHT G. Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia [J]. Physiologia Plantarum, 2003, 117(4): 508–520.
- [36] 刘泽伟,赖金龙,李俊柯,等.铀对蚕豆幼苗光合特性和呼吸 代谢的毒害机理[J].农业环境科学学报,2020,39(9): 1916-1924.
- [37] TESNIÈRE C, VERRIÈS C. Molecular cloning and expression of cDNAs encoding alcohol dehydrogenases from Vitis vinifera L. during berry development [J]. Plant Science, 2000, 157 (1): 77-88.

21