干旱胁迫对美国流苏树幼苗光合特性和 叶片结构的影响

韩睿婷,韩丽霞,张鸽香^①

(南京林业大学风景园林学院, 江苏南京 210037)

摘要: 以美国流苏树(Chionanthus virginicus Linn.)2年生幼苗为实验材料,设置对照(土壤相对含水量为75%~80%)、轻度干旱胁迫(土壤相对含水量为55%~60%)、中度干旱胁迫(土壤相对含水量为40%~45%)和重度干旱胁迫(土壤相对含水量为25%~30%)4个处理水平,对不同干旱胁迫条件下美国流苏树叶片光合特性和结构的变化进行了比较和分析。结果显示:随胁迫时间延长,各处理组美国流苏树叶片的叶绿素a、叶绿素b和总叶绿素a 和总叶绿素含量在各处理组间均无显著差异;在胁迫70d,中度和重度干旱胁迫处理组的上述3个指标均显著低于对照组。总体上看,随胁迫程度增加,同一时间美国流苏树叶片净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)呈降低的趋势;水分利用效率(WUE)呈波动降低的趋势;胁迫14、28和56d的叶片胞间CO₂浓度(Ci)呈降低的趋势,胁迫42和70d的叶片Ci值呈波动升高的趋势,重度干旱胁迫70d的叶片Ci值最大。各干旱胁迫处理组叶片最大荧光(F_m)和可变荧光(F_v)低于对照组,但均无显著差异;初始荧光(F_o)高于对照组,PSII最大光化学效率(F_v/F_m)和可变荧光(F_v)低于对照组,但均无显著差异;初始荧光(F_o)高于对照组,PSII最大光化学效率(F_v/F_m)和可变荧光(F_v)低于对照组,但均无显著差异;初始荧光(F_o)高于对照组和显著差异。干旱胁迫处理后,美国流苏树叶片总厚度、栅栏组织厚度、海绵组织厚度和组织结构疏松度均增加,叶片组织结构紧密度和栅海比减小;中度和重度干旱胁迫下可以通过降低光合作用、改变叶片结构特征来提高抗旱能力,且在轻度干旱时具有较强的适应能力。

关键词:干旱胁迫;美国流苏树;光合特性;解剖结构;超微结构

中图分类号: Q948.112⁺.3; Q945.78; S687.1 文献标志码: A 文章编号: 1674-7895(2023)03-0061-10 DOI: 10.3969/j.issn.1674-7895.2023.03.07

Effect of drought stress on photosynthetic characteristics and leaf structure of *Chionanthus* virginicus seedlings HAN Ruiting, HAN Lixia, ZHANG Gexiang^① (College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China), *J. Plant Resour.* & *Environ.*, 2023, **32**(3): 61–70

Abstract: Taking two-year-old Chionanthus virginicus Linn. seedlings as experimental materials, four treatments namely the control (soil relative water content of 75% - 80%), mild drought stress (soil relative water content of 55% - 60%), moderate drought stress (soil relative water content of 40% - 45%), and severe drought stress (soil relative water content of 25% - 30%) were set, and the changes of photosynthetic characteristics and structure of leaves of *C. virginicus* under different drought stress conditions were compared and analyzed. The results show that with the elongation of stress time, contents of chlorophyll *a*, chlorophyll *b*, and total chlorophyll in leaves of *C. virginicus* in each treatment group show a fluctuation decrease tendency. During 14-42 d of stress, there are no significant differences in contents of chlorophyll *a*, chlorophyll *b*, and total chlorophyll in leaves of *C. virginicus* among each

收稿日期: 2022-09-25

基金项目:国家林业局"948"项目(2014-4-17); 江苏高校品牌专业建设工程项目(PPZY2015A063)

作者简介:韩睿婷(1998—),女,江苏南京人,硕士研究生,主要从事园林植物生理和应用研究。

^①通信作者 E-mail: nld_zhang@ njfu.com.cn

引用格式:韩睿婷,韩丽霞,张鸽香.干旱胁迫对美国流苏树幼苗光合特性和叶片结构的影响[J].植物资源与环境学报,2023,32(3):61-70.

treatment group; at 70 d of stress, these three above-mentioned indexes in moderate and severe drought stress treatment groups are all significantly lower than those in the control group. Overall, with the increase of stress degree, net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) of leaves of C. virginicus at the same time show a tendency to decrease; water use efficiency (WUE) shows a fluctuation decrease tendency; intercelluar CO₂ concentration (Ci) of leaves at 14, 28, and 56 d of stress show a tendency to decrease, those of leaves at 42 and 70 d of stress show a fluctuation increase tendency, and that of leaves at 70 d of severe drought stress is the largest. Maximum fluorescence (F_m) and variable fluorescence (F_r) of leaves in each drought stress treatment group are lower than those in the control group, but there are no significant differences; initial fluorescence (F_{α}) is higher than that in the control group, maximum photochemical efficiency of PS II (F_v/F_m) and potential activity of PS II (F_{ν}/F_{o}) are lower than those in the control group, but only the severe drought stress treatment group is significantly different from the control group. After drought stress treatment, total leaf thickness, palisade tissue thickness, spongy tissue thickness, and tissue structure looseness of C. virginicus all increase, while leaf tissue structure tightness and ratio of palisade tissue to spongy tissue decrease; the chloroplast and starch grain degrade, the osmophilic gramule increases, and plasmolysis appears in cells, and the cell structure is severely damaged under moderate and severe drought stresses. Taken together, C. virginicus can improve drought-resistant ability under drought stress via reducing photosynthesis and changing leaf structure characteristics, and it possesses strong adaptability under mild drought stress.

Key words: drought stress; Chionanthus virginicus Linn.; photosynthetic characteristics; anatomical structure; ultra-microstructure

水分对植物的生长发育至关重要,不仅能够维持 植物的内部平衡,也影响着植物的分布区域和观赏价 值^[1]。近年来,随着气候变暖等生态问题的增加,干 旱引发的自然灾害在全球范围内越发严重^[2]。干旱 会对植物的形态生长、生理特性以及分子结构造成不 同程度的影响,严重情况下会导致植物死亡,对生态 系统的平衡造成损害^[3-4]。同时,随着城市化的快速 发展以及园林绿地面积的增大,园林植物面临着内部 水分亏缺的问题,部分园林植物生长较差,阻碍了其 环境美化等功能^[5]。因此,了解植物自身的生理特 性和植物对干旱胁迫的响应机制以及筛选抗旱能力 较强的树种对城市绿化建设具有重要意义。

美国流苏树(*Chionanthus virginicus* Linn.)为木犀 科(Oleaceae)流苏树属(*Chionanthus* Linn.)的灌木或 小乔木,原产于美国东南部,树形优雅,是珍贵的园林 绿化树种^[6],并且可作为食品、医疗的天然原料^[7]。 在气候干燥温暖、水资源相对匮乏的原产地以及潮湿 阴凉的英格兰地区,美国流苏树长势良好^[8]。20世 纪末,美国流苏树作为观赏树种引入国内,引种数量 较少且以人工栽培为主^[9]。当前,美国流苏树仅在 南京和镇江等地有少量栽培,因此,美国流苏树仅在 南京和镇江等地有少量栽培,因此,美国流苏树的引 种栽培潜力巨大并且有着十分广泛的应用前景^[9]。 目前,有关美国流苏树的相关研究主要集中在种子休 眠^[10]、染色体核型分析^[11]、解剖结构^[12]以及扦插繁 殖^[13]等方面,对美国流苏树抗旱性方面的研究并未 展开,不利于其生理特性的研究以及在干旱地区的推 广与应用。

鉴于此,本文以美国流苏树2年生幼苗为实验材 料,分析其在干旱胁迫下的光合特性和叶片结构的变 化,探讨其适应干旱胁迫的生理机制,以期为美国流 苏树在国内的引种、推广与应用提供科学理论依据。

1 材料和方法

1.1 材料

实验地位于南京林业大学国家园林实验教学示 范中心(东经118°49′、北纬32°05′),实验材料为美 国流苏树2年生播种苗,于2019年10月从苗床中起 出,栽植于塑料盆(直径21 cm、高18 cm)中,每盆1 株,种植土壤为园土(取自南京林业大学后山)与营 养土(江苏兴农基质科技有限公司)的混合基质,体 积比为2:1,每盆基质1.2 kg。于2020年5月选取 长势基本一致、生长良好的幼苗,移至温室缓苗45 d, 使幼苗充分适应温室内生长环境,并消除室外与温室 内因环境不同而造成的误差。温室内搭遮阳网(透光 率为30%);实验期间温室内正午平均温度为32.6℃, 空气相对湿度为35.1%;夜间平均温度为25.4℃,空气 相对湿度为86.5%。

1.2 方法

1.2.1 千旱胁迫处理方法 采用盆栽控水法,参考 梁君瑛^[14]的方法及预实验结果设置4个处理水平: 对照(土壤相对含水量为75%~80%)、轻度干旱胁迫 (土壤相对含水量为55%~60%)、中度干旱胁迫(土 壤相对含水量为40%~45%)和重度干旱胁迫(土壤 相对含水量为25%~30%)。每个处理20株幼苗, 3个重复。于每天17:00,使用TDR 150土壤含水仪 (美国Spectrum公司)测定土壤含水量,使用电子分 析天平(精度0.1 mg,瑞士Mettler Toledo公司)称量、 记录并补充蒸发水分。基于预实验结果,分别在干旱 胁迫14、28、42、56和70d的8:00采集叶片测定叶绿 素含量,9:00至11:00(晴朗无风天气)测定气体交 换参数;实验共进行70d,于干旱胁迫实验结束时测 定叶绿素荧光参数并观察叶片结构。

1.2.2 叶绿素含量测定 从各处理中随机选取生长 良好的 3 株幼苗,选取植株主枝从上至下第 3 至第 5 枚生长基本一致、向阳且健康完整的叶片,将叶片冲 洗干净、剪碎、混匀,使用电子分析天平称取 0.2 g,采 用丙酮乙醇浸取法^[15]提取叶片中光合色素,使用 Lambda 365 紫外分光光度计(美国 PerkinElmer 公 司)分别在波长 663 和 646 nm 下测定吸光度,根据公 式"叶绿素 a 含量 = 12.21 A_{663} - 2.81 A_{646} "和"叶绿素 b含量 = 20.13 A_{646} - 5.03 A_{663} "分别计算叶片叶绿素 a 和 叶绿素 b 含量,二者之和为总叶绿素含量。式中, A_{663} 和 A_{646} 分别为光合色素提取液在波长 663 和 646 nm 下的吸光度。每个指标重复测定 3 次,结果 取平均值。

1.2.3 气体交换参数测定 从各处理中随机选取生 长良好的 3 株幼苗,叶片选取标准同叶绿素含量测 定。使用 CIRAS-3 型便携式光合仪(美国 PP-system 公司)测定叶片光合参数,包括净光合速率(Pn)、气 孔导度(Gs)、胞间 CO₂浓度(Ci)、蒸腾速率(Tr)和水 分利用效率(WUE)。测定时,CO₂浓度为 380 ~ 420 μ mol·mol⁻¹,叶室温度为 25 ℃,光合有效辐射为 1 200 μ mol·m⁻²·s⁻¹,叶室湿度为 80%。每个指标 重复测定 3 次,结果取平均值。

1.2.4 叶绿素荧光参数测定 于9:00 至11:00(晴 朗无风天气),使用 Handy PEA 植物效率分析仪(英 国 Hansatech Instruments 公司)测定叶片叶绿素荧光 参数,叶片选取标准同叶绿素含量测定。避开主叶脉 夹住叶片,暗适应 20 min,移开叶夹后直接测定,测定 指标包括初始荧光(F_{o})、最大荧光(F_{m})、可变荧光 (F_{v})、PSII最大光化学效率(F_{v}/F_{m})和PSII潜在活 性(F_{v}/F_{o})。每个指标重复测定3次,结果取平均 值。使用 PEAPlus 软件解析叶绿素荧光参数。

1.2.5 叶片结构测定 参考文献[16-17]中的方法, 从各处理中选取植株主枝从上至下的第4枚叶片,取 叶片中部距中脉两侧约0.3 cm 处面积1 cm×1 cm 的 叶块。将叶块放入FAA 固定液中24 h,用0.1 mol·L⁻¹ 磷酸缓冲液(pH 6.8)漂洗,再用不同浓度乙醇溶液进 行梯度脱水处理,乙酸异戊酯溶液置换后干燥、喷金, 使用 Quanta-200 扫描电子显微镜(荷兰 FEI 公司)观 察、拍照并记录上表皮、栅栏组织、海绵组织、下表皮 的厚度以及叶片总厚度。根据公式"组织结构紧密 度=(栅栏组织厚度/叶片总厚度)×100%"、"组织结 构疏松度=(海绵组织厚度/叶片总厚度)×100%"和 "栅海比=栅栏组织厚度/海绵组织厚度"分别计算叶 片的组织结构紧密度、组织结构疏松度和栅海比。每 个叶片样品观察 10 个视野,每个指标重复测定 3 次, 结果取平均值。

参考文献[18-19]中的方法,叶片选取标准同叶 片结构测定。将叶块放入体积分数2.5%戊二醛溶液 中固定24h,用0.1mol·L⁻¹磷酸缓冲液(pH6.8) 漂洗,用体积分数1% 锇酸固定样品2h后用 0.1mol·L⁻¹磷酸缓冲液(pH6.8)漂洗。经不同浓度 乙醇溶液梯度脱水后,用环氧树脂对样品进行渗透和 包埋。使用Leica EM UC6 超薄切片机(德国Leica 公 司)将样品切成厚度80nm的薄片,再用体积分数 3%乙酸铀-枸橼酸铅溶液将切片染色,使用JEM-1400透射电子显微镜(日本JEOL公司)观察、拍照 并记录。每个叶片样品观察10个视野。

1.3 数据处理和分析

使用 EXCEL 2010 软件整理数据,使用 SPSS 25.0 软件进行数据分析。

2 结果和分析

2.1 干旱胁迫对美国流苏树叶片光合特性的影响

2.1.1 千旱胁迫下叶片叶绿素含量的变化 不同干 旱胁迫条件下美国流苏树叶片的叶绿素 a、叶绿素 b 和总叶绿素含量的变化见表 1。结果显示:除胁迫 42 和 56 d 外,同一时间美国流苏树叶片的叶绿素 a、叶 绿素 b 和总叶绿素含量随胁迫程度增加总体呈先升

处理组2)	不同时间叶片的叶绿素 a 含量/(mg · g ⁻¹) Chlorophyll a content in leaves at different times						
Treatment group ²⁾	14 d	28 d	42 d	56 d	70 d		
СК	2.04±0.20a	2.00±0.27a	2.06±0.19a	1.92±0.01a	$1.89 \pm 0.05 \mathrm{b}$		
D1	2.28±0.25a	2.25±0.30a	2.03±0.11a	2.01±0.06a	2.10±0.13a		
D2	2.00±0.36a	2.00±0.25a	1.95±0.18a	$1.80 \pm 0.08a$	$1.28 \pm 0.01 \mathrm{c}$		
D3	2.00±0.08a 1.93±0.17a 1.98±0.30a		$1.35 \pm 0.20 \mathrm{b}$	$1.17{\pm}0.07{\rm d}$			
处理组 ²⁾	不同时间叶片的叶绿素 b 含量/(mg・g ⁻¹) Chlorophyll b content in leaves at different times						
Treatment group ²⁾	14 d	28 d	42 d	56 d	70 d		
СК	0.59±0.07a	0.62±0.11a	0.59±0.05a	0.55±0.02a	0.57±0.03a		
D1	0.65±0.10a	0.68±0.12a	0.56±0.03a	0.55±0.02a	0.61±0.05a		
D2	0.56±0.13a	0.56±0.13a 0.58±0.10a 0.54±0.06a		0.52±0.03a 0.38±0.02b			
D3	0.57±0.03a	0.56±0.07a	0.56±0.10a	$0.36 \pm 0.08 \mathrm{b}$	$0.34 \pm 0.01 \mathrm{b}$		
处理组 ²⁾	不同时间叶片的总叶绿素含量/(mg·g ⁻¹) Total chlorophyll content in leaves at different times						
Treatment group ²⁾	14 d	28 d	42 d	56 d	70 d		
СК	2.63±0.28a	2.63±0.38a	2.65±0.24a	2.47±0.02a	$2.46 \pm 0.07 \mathrm{b}$		
D1	2.93±0.35a	2.93±0.42a	2.59±0.14a	2.57±0.09a	2.71±0.18a		
D2	2.56±0.49a	2.58±0.35a	2.49±0.25a	2.32±0.10a	1.66±0.01c		
D3	2.58±0.11a	2.50±0.24a	2.54±0.41a	$1.71 \pm 0.28 \mathrm{b}$	$1.45{\pm}0.09\mathrm{d}$		

表 1	不同干旱胁迫条件下美国流苏树叶片的叶绿素 a_x 叶绿素 b 和总叶绿素含量的变化 $(\overline{X}\pm SD)^{1}$
Table	1 Changes of chlorophyll a, chlorophyll b, and total chlorophyll contents in leaves of Chionanthus virginicus Linn. under different drough
stress	conditions $(\overline{X}\pm SD)^{1}$

¹⁾ 同列中不同的小写字母表示差异显著(P<0.05) Different lowercases in the same column indicate the significant (P<0.05) differences.

²⁾ CK: 对照(土壤相对含水量为75%~80%)The control (soil relative water content of 75%-80%); D1: 轻度干旱胁迫(土壤相对含水量为55%~60%)Mold drought stress (soil relative water content of 55%-60%); D2: 中度干旱胁迫(土壤相对含水量为40%~45%)Moderate drought stress (soil relative water content of 40%-45%); D3: 重度干旱胁迫(土壤相对含水量为25%~30%)Severe drought stress (soil relative water content of 25%-30%).

高后降低的趋势,且轻度干旱胁迫(土壤相对含水量 为55%~60%)处理组叶片的叶绿素 a、叶绿素 b 和总 叶绿素含量高于对照(土壤相对含水量为75%~ 80%)组且达到最大值,但总体与对照组无显著差异; 胁迫 42 和56 d 的美国流苏树叶片的叶绿素 a、叶绿 素 b 和总叶绿素含量随胁迫程度增加总体呈波动降 低的趋势。在胁迫14、28 和42 d,上述3个指标在各 处理组间均无显著差异;在胁迫56 和70 d,重度干旱 胁迫(土壤相对含水量为25%~30%)处理组的上述 3 个指标均显著低于对照组。

结果(表1)还显示:随胁迫时间延长,各处理组 美国流苏树叶片的叶绿素 a、叶绿素 b 和总叶绿素含 量呈波动降低的趋势。与胁迫 14 d 比,胁迫 70 d 的 对照组以及轻度、中度(土壤相对含水量为 40%~ 45%)和重度干旱胁迫处理组叶片的叶绿素 a 含量分 别降低了 7.35%、7.89%、36.00%和 41.50%;叶绿素 b 含量分别降低了 3.39%、6.15%、32.14%和 40.35%,总叶 绿素含量分别降低了 6.46%、7.51%、35.16%和 43.80%。 说明胁迫时间的延长对中度和重度干旱胁迫处理组 的影响远大于对照组和轻度干旱胁迫处理组。 2.1.2 千旱胁迫下叶片气体交换参数的变化 不同 干旱胁迫条件下美国流苏树叶片气体交换参数的变 化见表 2。结果显示:同一时间美国流苏树叶片净光 合速率(Pn)随胁迫程度增加呈降低的趋势。在胁迫 14 d,各处理组间叶片 Pn 值均无显著差异;在胁迫 28 和 42 d,中度和重度干旱胁迫处理组叶片 Pn 值均显 著低于对照组;在胁迫 56 和 70 d,各干旱胁迫处理组 叶片 Pn 值均显著低于对照组。随胁迫时间延长,对 照组叶片 Pn 值变化不明显;轻度干旱胁迫处理组叶 片 Pn 值呈平缓下降的趋势;中度和重度干旱胁迫处 理组叶片 Pn 值波动变化,且胁迫 28~70 d 的叶片 Pn 值明显低于胁迫 14 d。

结果(表 2)还显示:同一时间美国流苏树叶片气 孔导度(Gs)随胁迫程度增加呈降低的趋势。在胁迫 14 d,各处理组间无显著差异;在胁迫 28~70 d,各干 旱胁迫处理组叶片 Gs 值总体显著低于对照组,其中, 中度和重度干旱胁迫处理组叶片 Gs 值总体显著低于 轻度干旱胁迫处理组。随着胁迫时间延长,对照组以 及中度和重度干旱胁迫处理组叶片 Gs 值波动变化, 其中,中度和重度干旱胁迫处理组在胁迫 28~70 d 的

表 2 不同干旱胁迫条件下美国流苏树幼苗叶片光合气体交换参数的变化($\overline{X}\pm SD$)¹⁾ Table 2 Changes of photosynthetic gas exchange parameters of leaves of *Chionanthus virginicus* Linn. under different drought stress conditions ($\overline{X}\pm SD$)¹⁾

处理组2)	不同时间叶片的净光合速率/(µmol・m ⁻² ・s ⁻¹) Net photosynthetic rate of leaves at different times							
Treatment group ²⁾	14 d	28 d	42 d	56 d	70 d			
СК	10.35±2.45a 10.15±2.55a 9.37±0.55a 11.97±2.45a		11.97±2.45a	11.17±1.05a				
D1	8.90±0.30a	8.65±0.45a	7.11±2.09ab	$6.50 \pm 0.75 \mathrm{b}$	$5.47{\pm}0.75\mathrm{b}$			
D2	8.13±1.59a	$3.40 \pm 0.25 \mathrm{b}$	$5.10 \pm 1.90 \mathrm{bc}$	$5.50{\pm}0.18{\rm b}$	$4.27 \pm 0.50 \mathrm{b}$			
D3	7.73±0.95a	$2.83 \pm 0.55 \mathrm{b}$	$2.57 \pm 0.42c$	$3.77{\pm}1.24\mathrm{b}$	$1.40 \pm 0.60 c$			
处理组2)	不同时间叶片的气孔导度/(mmol・m ⁻² ・s ⁻¹) Stomatal conductance of leaves at different times							
Treatment group ²⁾	14 d	28 d	42 d	56 d	70 d			
СК	164.67±25.50a	170.00±32.0a	135.00±10.54a	188.33±28.36a	164.67±4.51a			
D1	129.00±8.25a	$113.00{\pm}9.00{\rm b}$	116.67±33.50a	$111.00{\pm}28.62\mathrm{b}$	$84.00 \pm 11.85 \mathrm{b}$			
D2	117.67±20.98a	$38.67{\pm}9.62{\rm c}$	$61.02 \pm 6.66 \mathrm{b}$	$75.00{\pm}3.51{\rm bc}$	$58.67{\pm}6.13{\rm bc}$			
D3	$108.00 \pm 12.28a$	$30.00 \pm 9.64 c$	$42.33{\pm}15.28\mathrm{b}$	$47.67 \pm 10.97 c$	28.67±6.51c			
处理组 ²⁾								
Treatment group ²⁾	14 d	28 d	42 d	56 d	70 d			
СК	268.00±13.00a	267.00±11.00a	$263.00{\pm}1.00{\rm ab}$	272.67±10.69ab	$255.00 \pm 13.00 \mathrm{b}$			
D1	255.33±2.52a	$236.67{\pm}9.02{\rm b}$	$270.67{\pm}2.52{\rm ab}$	283.00±15.72a	$266.00 {\pm} 10.54 {\rm b}$			
D2	255.33±6.03a	a 231.67±8.96b 249.33±27.54b		$261.00{\pm}0.85{\rm ab}$	$253.67 \pm 4.51 \mathrm{b}$			
D3	237.67±33.84a	$226.00{\pm}26.85\mathrm{b}$	288.67±26.01a	$256.67 {\pm} 14.64 {\rm b}$	307.67±18.50a			
处理组 ²⁾	不同时间叶片的蒸腾速率/(mmol·m ⁻² ·s ⁻¹) Transpiration rate of leaves at different times							
Treatment group ²⁾	14 d	28 d	42 d	56 d	70 d			
СК	3.25±0.18a	4.06±0.43a	3.71±0.19a	4.36±0.36a	2.64±0.36a			
D1	2.96±0.11a	3.28±0.14a	3.41±0.66a	$3.36 \pm 0.56 \mathrm{b}$	1.90 ± 0.40 ab			
D2	2.90±0.26a	$1.51 \pm 0.08 \mathrm{b}$	$2.20\pm0.42\mathrm{b}$	$2.68 \pm 0.26 \mathrm{b}$	$1.29 \pm 0.62 \mathrm{bc}$			
D3	2.71±0.83a	$1.27 \pm 0.33 \mathrm{b}$	$1.66 \pm 0.46 \mathrm{b}$	$1.87 \pm 0.35 c$	$0.70 \pm 0.10c$			
处理组2)	不同时间叶片的水分利用率/(µmol・mmol ⁻¹) Water use efficiency of leaves at different times							
Treatment group ²⁾	14 d	28 d	42 d	56 d	70 d			
СК	3.55±0.18a	2.46±0.37a	2.51±0.03a	2.73±0.41a	4.38±0.99a			
D1	3.01±0.01ab	2.63±0.03a	2.19±0.15a	$1.95 \pm 0.12 \mathrm{b}$	$2.90{\pm}0.21{\rm bc}$			
D2	$2.79{\pm}0.32\mathrm{b}$	2.18±0.24a	2.26±0.49a 2.04±0.36b		$3.24 \pm 0.11 \mathrm{b}$			
D3	2.96±0.55ab	2.14±0.51ab	1.48±0.49b 1.98±0.27b		$1.91 \pm 0.59 c$			

¹⁾ 同列中不同的小写字母表示差异显著(P<0.05) Different lowercases in the same column indicate the significant (P<0.05) differences.

²⁾ CK:对照(土壤相对含水量为75%~80%)The control (soil relative water content of 75%-80%); D1:轻度干旱胁迫(土壤相对含水量为55%~60%)Mild drought stress (soil relative water content of 55%-60%); D2:中度干旱胁迫(土壤相对含水量为40%~45%)Moderate drought stress (soil relative water content of 40%-45%); D3:重度干旱胁迫(土壤相对含水量为25%~30%)Severe drought stress (soil relative water content of 25%-30%).

叶片 Pn 值均明显低于胁迫 14 d;轻度干旱胁迫处理 组叶片 Gs 值总体呈下降的趋势。

结果(表 2)还显示:同一时间美国流苏树叶片胞 间 CO₂浓度(Ci)随胁迫程度增加变化各异。在胁迫 14、42 和56 d,各干旱胁迫处理组叶片 Ci 值与对照组 均无显著差异;在胁迫 28 d,各干旱胁迫处理组叶片 Ci 值均显著低于对照组;在胁迫 70 d,重度干旱胁迫 处理组叶片 Ci 值显著高于对照组以及轻度和中度干 旱胁迫处理组,而后三者间无显著差异。随胁迫时间 延长,对照组以及轻度和重度干旱胁迫处理组叶片 Ci 值呈"降低—升高—降低"的趋势,最大值均出现 在胁迫 56 d;重度干旱胁迫处理组叶片 Ci 值波动变 化,最大值出现在胁迫 70 d。

结果(表 2)还显示:同一时间美国流苏树叶片蒸 腾速率(Tr)随胁迫程度增加呈降低的趋势。在胁迫 14 d,各处理组间叶片 Tr 值均无显著差异;在胁迫 28 和 42 d,中度和重度干旱胁迫处理组叶片 Tr 值均显 著低于对照组;在胁迫 56 和 70 d,各干旱胁迫处理组 叶片 Tr 值总体显著低于对照组。随胁迫时间延长, 各处理组叶片 Tr 值变化各异,但均在胁迫 70 d 达到 最小值,且明显低于胁迫14 d。

结果(表 2)还显示:同一时间美国流苏树叶片水 分利用率(WUE)随胁迫程度增加呈波动降低的趋势。在胁迫 14 和 28 d,各干旱胁迫处理组叶片 WUE 值与对照组总体无显著差异;在胁迫 42 d,重度干旱 胁迫处理组叶片 WUE 值显著低于对照组;在胁迫 56 和 70 d,各干旱胁迫处理组叶片 WUE 值均显著低于 对照组。随胁迫时间延长各处理组叶片 WUE 值总 体呈先降低后升高的趋势,胁迫 28~56 d 的叶片 WUE 值均低于胁迫 14 d。

总体上看,随胁迫程度增加,同一时间美国流苏 树叶片的 Pn、Gs 和 Tr 值呈降低的趋势;胁迫 42 和 70 d 的叶片 Ci 值呈波动升高的趋势,重度干旱胁迫 70 d 的叶片 Ci 值最大,明显高于其他处理组;叶片 WUE 值呈波动降低的趋势。随胁迫时间延长,各处 理组叶片的 Pn、Gs、Ci 和 Tr 值变化各异,WUE 值总 体呈先降低后升高的趋势。

2.1.3 千旱胁迫下叶片叶绿素荧光参数的变化 不同干旱胁迫条件下美国流苏树叶片叶绿素荧光参数的变化见表 3。结果显示:随胁迫程度增加,美国流苏树叶片最大荧光(F_m)、可变荧光(F_v)、PS II 最大光化学效率(F_v/F_m)和 PS II 潜在活性(F_v/F_o)总体呈降低的趋势,初始荧光(F_o)总体呈升高的趋势。 重度干旱胁迫处理组叶片的 F_o值显著高于对照组,较对照组升高了 51.65%,F_v/F_m和 F_v/F_o值均显著低于对照组,分别较对照组降低了 13.41%和 43.01%,上述 3 个指标在其他 2 个处理组间差异均不显著。

表 3 不同干旱胁迫条件下美国流苏树叶片叶绿素荧光参数的变化 $(\overline{X}\pm SD)^{1}$

Table 3 Changes of chlorophyll fluorescence parameters of leaves of *Chionanthus virginicus* Linn. under different drought stress conditions $(\overline{X}\pm SD)^{(1)}$

处理组 ²⁾ Treatment group ²⁾	初始荧光 Initial fluorescence	最大荧光 Maximum fluorescence	可变荧光 Variable fluorescence	PS II 最大光化学效率 Maximum photochemical efficiency of PS II	PSⅡ潜在活性 Potential activity of PSⅡ
СК	$584.67 \pm 40.00 \mathrm{b}$	3 328.67±123.00a	2 744.00±82.00a	0.82±0.01a	4.72±0.17a
D1	$679.67 \pm 10.80 \mathrm{ab}$	3 184.00±89.00a	2 504.33±106.00a	0.79 ± 0.07 ab	3.68±0.13ab
D2	$636.00{\pm}21.00{\rm b}$	2 993.33±78.00a	2 357.33±59.00a	0.79 ± 0.02 ab	3.71±0.06ab
D3	886.67±38.00a	3 120.67±182.00a	2 234.00±102.00a	$0.71 \pm 0.05 \mathrm{b}$	$2.69{\pm}0.60{\rm b}$

¹⁾同列中不同的小写字母表示差异显著(P<0.05) Different lowercases in the same column indicate the significant (P<0.05) differences.

²⁾ CK: 对照(土壤相对含水量为75%~80%)The control (soil relative water content of 75%-80%); D1: 轻度干旱胁迫(土壤相对含水量为55%~60%)Mild drought stress (soil relative water content of 55%-60%); D2: 中度干旱胁迫(土壤相对含水量为40%~45%)Moderate drought stress (soil relative water content of 40%-45%); D3: 重度干旱胁迫(土壤相对含水量为25%~30%)Severe drought stress (soil relative water content of 25%-30%).

2.2 干旱胁迫对美国流苏树叶片结构的影响

不同干旱胁迫条件下美国流苏树叶片扫描电子

显微镜观察结果见图 1,解剖结构的变化见表 4,透射 电子显微镜观察结果见图 2。

UE: 上表皮 Upper epidermis; PT: 栅栏组织 Palisade tissue; ST: 海绵组织 Spongy tissue; LE: 下表皮 Lower epidermis.

1: 对照(土壤相对含水量为75%~80%)The control (soil relative water content of 75%-80%); 2: 轻度干旱胁迫(土壤相对含水量为 55%~60%) Mild drought stress (soil relative water content of 55%-60%); 3: 中度干旱胁迫(土壤相对含水量为 40%~45%)Moderate drought stress (soil relative water content of 40%-45%); 4: 重度干旱胁迫(土壤相对含水量为 25%~30%)Severe drought stress (soil relative water content of 25%-30%).

图 1 不同干旱胁迫条件下美国流苏树叶片的扫描电子显微镜观察结果

Fig. 1 Scanning electron microscope observation result on leaves of Chionanthus virginicus Linn. under different drought stress conditions

表 4	不同于	·旱胁迫条件下美国流苏树叶片解剖结构的变化 $(\overline{X}\pm SD)^{1)}$
Table	4 Ch	anges of anatomical structure of leaves of <i>Chionanthus virginicus</i> Linn. under different drought stress conditions $(\overline{X}\pm SD)^{(1)}$

处理组 ²⁾ Treatment group ²⁾	厚度/µm Thickness				组织结构	组织结构	栅海比/%	
	上表皮 Upper epidermis	栅栏组织 Palisade tissue	下表皮 Lower epidermis	海绵组织 Spongy tissue	叶片总厚度 Total leaf thickness	紧密度/% Tissue structure tightness	疏松度/% Tissue structure looseness	Ratio of palisade tissue and spongy tissue
СК	8.10±.031a	$63.79 \pm 2.49a$	8.90 ± 0.58 a	$60.89{\pm}1.64\mathrm{b}$	141.68±1.13a	45.01±1.47a	$43.00{\pm}1.43{\rm c}$	$1.05 \pm 0.07a$
D1	$8.34 \pm 0.36a$	69.76±3.15a	$7.10{\pm}0.20{\rm b}$	$71.70 \pm 5.12a$	158.02±9.17a	44.24±1.08a	$45.34{\pm}1.30{\rm bc}$	$0.92 \pm 0.05 \mathrm{ab}$
D2	$8.37 \pm 0.33a$	$64.47 \pm 1.45a$	$5.50{\pm}0.32{\rm c}$	$73.28 \pm 1.29a$	151.19±1.42a	41.97±0.62a	$48.48{\pm}1.00{\rm ab}$	$0.87{\pm}0.03{\rm b}$
D3	$6.40 \pm 0.41 \mathrm{b}$	$64.16 \pm 3.18a$	$5.36{\pm}0.50{\rm c}$	$77.35 \pm 0.94a$	153.42±2.12a	41.78±1.58a	50.44 ± 0.97 a	$0.83{\pm}0.05{\rm b}$

¹⁾同列中不同的小写字母表示差异显著(P<0.05) Different lowercases in the same column indicate the significant (P<0.05) differences.

²⁾ CK: 对照(土壤相对含水量为75%~80%)The control (soil relative water content of 75%-80%); D1: 轻度干旱胁迫(土壤相对含水量为55%~60%)Mild drought stress (soil relative water content of 55%-60%); D2: 中度干旱胁迫(土壤相对含水量为40%~45%)Moderate drought stress (soil relative water content of 40%-45%); D3: 重度干旱胁迫(土壤相对含水量为25%~30%)Severe drought stress (soil relative water content of 25%-30%).

CW: 细胞壁 Cell wall; Chl: 叶绿体 Chloroplast; OG: 嗜锇颗粒 Osmiophilic gramule; N: 细胞核 Cell nucleus; SG: 淀粉粒 Starch grain; GL: 基粒片层 Granum lamella.

1-3: 对照(土壤相对含水量为75%~80%)The control (soil relative water content of 75%-80%); 4-6: 轻度干旱胁迫(土壤相对含水量为 55%~60%)Mild drought stress (soil relative water content of 55%-60%); 7-9: 中度干旱胁迫(土壤相对含水量为 40%~45%)Moderate drought stress (soil relative water content of 40%-45%); 10-12: 重度干旱胁迫(土壤相对含水量为 25%~30%)Severe drought stress (soil relative water content of 25%-30%).

图 2 不同干旱胁迫条件下美国流苏树叶片的透射电子显微镜观察结果

Fig. 2 Transmission electron microscope observation result on leaves of Chionanthus virginicus Linn. under different drought stress conditions

结果(图1)显示:对照(土壤相对含水量为 75%~80%)组美国流苏树叶片为异面叶,叶片结构 由表皮、叶肉和叶脉3部分组成,上表皮细胞呈近圆 形或近长方形,排列紧密,下表皮细胞呈椭圆形,下表 皮细胞体积小于上表皮细胞。位于上表皮下方的是 排列整齐的长柱状的栅栏组织,其下是排列紧密的海 绵组织,栅栏组织厚度大于海绵组织厚度(图1-1)。 随胁迫程度增加,叶片组织结构发生了明显变化,栅 栏组织逐渐短缩、边缘区域模糊,海绵组织排列逐渐 零散、细胞间隙变大;重度干旱胁迫(土壤相对含水 量为75%~80%)下栅栏组织排列层次不齐、结构难 以分辨,海绵组织排列疏松、间隙较大且受损严重 (图1-2~4)。

结果(表 4)显示:各干旱胁迫处理组叶片栅栏组 织厚度和总厚度均高于对照组,但差异均不显著,海 绵组织厚度显著高于对照组,下表皮厚度显著低于对 照组;重度干旱胁迫处理组叶片上表皮厚度显著低于 对照组。随胁迫程度增加,叶片组织结构紧密度呈降 低的趋势,但各处理组间无显著差异;叶片组织结构 疏松度呈升高的趋势,栅海比呈降低的趋势,其中,中 度(土壤相对含水量为40%~45%)和重度干旱胁迫 处理组叶片组织结构疏松度显著高于对照组,栅海比 显著低于对照组。

结果(图 2)显示:对照组叶片细胞中有明显的细 胞核及叶绿体,细胞形状规则,细胞壁均匀,叶绿体数 量较多且整齐分布于细胞边缘(图 2-1);叶绿体内分 布有少量嗜锇颗粒以及体积较小的白色淀粉粒(图 2-2);基粒片层堆叠整齐有序(图 2-3)。轻度干旱 胁迫(土壤相对含水量为55%~60%)处理组叶片细 胞中部分叶绿体游离在细胞中,不贴细胞壁(图 2-4):嗜锇颗粒增多,淀粉粒体积增大且颜色变浅(图 2-5);基粒片层出现扩张,间隙变大(图 2-6)。中度 干旱胁迫处理组叶片细胞中叶绿体出现降解现象,部 分出现与细胞壁分离现象,细胞内降解物质增多(图 2-7);部分嗜锇颗粒游离于叶绿体外,淀粉粒体积增 大且颜色变浅(图 2-8);基粒片层结构混乱,降解情 况明显(图 2-9)。重度干旱胁迫处理组叶片细胞结 构破坏严重,内部结构混乱、缺失,质壁分离严重,叶 绿体肿胀、出现解体现象(图 2-10);嗜锇颗粒急剧增 多且大多游离于叶绿体外,淀粉粒数量增多、总体积 增大(图 2-11);基粒片层消失(图 2-12)。

3 讨论和结论

光合作用是植物生长发育物质的来源,叶绿素是 植物重要的光合色素,不仅可以吸收、分散和传递光 量子,也反映了植物对环境胁迫的适应程度^[20-21]。 干旱胁迫处理会不同程度地提高或降低植物叶片的 叶绿素含量,从而影响植物的光合作用^[22-23]。本研 究结果显示:与对照(土壤相对含水量为75%~80%) 组相比,轻度干旱胁迫(土壤相对含水量为55%~ 60%)处理组在不同胁迫时间(除42 d外)的叶片叶 绿素 a、叶绿素 b 和总叶绿素含量总体升高, 胁迫 42 d 时略有降低,但二者间均无显著差异,说明美国 流苏树叶片在此干旱胁迫程度下捕获了较多的光辐 射以维持正常的生长发育。而中度(土壤相对含水 量为 40%~45%) 和重度(土壤相对含水量为 25%~ 30%)干旱胁迫处理组在不同胁迫时间的上述3个指 标总体低于对照组,且在胁迫70d,中度和重度干旱 胁迫处理组的上述3个指标均显著低于对照组,说明 干旱胁迫程度加剧会降低植美国流苏树叶片的光能 转化能力。黄承建等[24]研究发现,干旱胁迫时间延 长会使植物体内产生大量活性氧并影响叶绿体结构, 从而降低叶绿素含量。本研究中,随胁迫时间延长, 各处理组叶片的叶绿素 a、叶绿素 b 和总叶绿素含量 呈波动降低的趋势,说明长时间的干旱胁迫处理会导 致美国流苏树叶片的叶绿素分解。

不同水分条件下,植物叶片的净光合速率(Pn) 可以反映其在逆境中的光合响应能力^[25]。本研究 中,同一时间美国流苏树叶片 Pn 值随胁迫程度增加 呈降低的趋势,说明干旱胁迫程度增加会降低叶片的 光合响应能力。随胁迫时间延长,轻度干旱胁迫处理 组叶片 Pn 值呈平缓下降的趋势;中度干旱胁迫处理 组叶片 Pn 值在胁迫 28 d 陡降后回升并趋于平稳;而 重度干旱胁迫处理组叶片 Pn 值呈"降低—升高—降 低"的趋势,且在胁迫 70 d 明显降低,说明美国流苏 树叶片对长时间的干旱胁迫有一定的耐受能力,但当 胁迫程度超过一定范围,叶片损伤不可逆转^[26]。 Farquhar 等^[27]和许大全^[28]的研究发现,若胞间 CO, 浓度(Ci)、气孔导度(Gs)和 Pn 值均为降低趋势,则 说明植物叶片光合效率下降的原因是气孔限制;若 Ci 值升高, Ps 和 Gn 值降低,则叶片光合效率下降的 主要原因是非气孔限制。本研究中,胁迫 14 和 28 d

的叶片 Pn、Gs 和 Ci 值总体随胁迫程度增加呈降低的 趋势,说明美国流苏树叶片在胁迫初期气孔限制导致 了其光合效率的下降;胁迫 42~70 d 的叶片 Pn 和 Gs 值随胁迫程度增加呈降低的趋势,而 Ci 值在胁迫 42 和70d 呈波动升高的趋势,说明由于胁迫程度增加 和胁迫时间延长,非气孔限制逐渐成为影响美国流苏 树光合效率的主要原因:而中度和重度干旱胁迫 56 d 的叶片 Ci 值低于对照,说明在实验后期中度和重度 处理组中存在气孔限制影响光合效率的情况,这与一 般结论不同^[29-30],具体原因还需进一步研究。植物 会通过调节水分利用效率(WUE)对缺水环境产生一 定的抵抗性及适应性^[31]。张燕红等^[32]研究发现,干 旱胁迫会降低植物的 WUE 值, 而较高的水分胁迫也 会产生较高的 WUE 值,这是植物抗性提高的表现。 本研究中,随胁迫时间延长各处理组叶片 WUE 值总 体呈先降低后升高的趋势,蒸腾速率在胁迫后期 (56~70 d)呈降低的趋势,说明美国流苏树在干旱胁 迫后期会通过提高水分利用率、降低蒸腾作用来应对 干旱胁迫。

叶绿素荧光参数对各种环境胁迫反应十分灵敏, 可作为植物光合作用的一个重要指标[33-35]。在逆境 条件下,初始荧光(F_a)增加说明植物 PSⅡ反应中心 受到了不可逆转的破坏^[36]。最大荧光(F_m)和可变 荧光(F_a)反映了叶片光合电子传递过程以及 PSⅡ反 应中心活性,光抑制条件下,光合结构被破坏会引起 F_{v} 值下降,而 F_{v} 值下降主要源于 F_{w} 值的下降。PS II 最大光化学效率(F_{*}/F_w)常被用来判断植物 PSⅡ反 应中心是否受到光抑制的损坏[37-39]。刘彧等[40]研 究结果显示: PS II 潜在活性(F_{\downarrow}/F_{o}) 与有活性的PS II 反应中心数量成正比,逆境胁迫会使植物 F_/F。值降 低。本研究中,随胁迫程度增加,美国流苏树叶片的 F_{m} 、 F_{v} 、 F_{v}/F_{m} 和 F_{v}/F_{o} 值总体呈降低的趋势, F_{o} 值总 体呈升高的趋势,说明干旱胁迫下美国流苏树叶片的 PSⅡ反应中心受损或失去可逆性,光合电子传递效 率下降,光合作用减弱。

叶片的解剖结构能较为直观地反映出其对逆境 的适应性,如栅海比减小是被动适应干旱胁迫的表 现^[41]。崔艳桃^[42]的研究结果表明:干旱胁迫下,植 株可以通过增加叶片厚度、栅栏组织厚度以及海绵组 织厚度为叶片提供机械支撑,阻止水分散失。刘济明 等^[43]的研究结果表明:干旱胁迫下,植物会通过减小 叶片组织结构紧密度以及提高叶片组织结构疏松度 从而减少叶片与光辐射的接触面积以保存水分。本研究结果显示:与对照组相比,各干旱胁迫处理组美国流苏树叶片总厚度、栅栏组织厚度、海绵组织厚度和组织结构疏松度均增加,叶片组织结构紧密度和栅海比减小,说明美国流苏树会通过改变叶片结构来减少水分散失,从而提高其对干旱胁迫的适应性。但上、下表皮厚度随干旱胁迫程度增加而减少是水分亏缺、叶片生长受到限制的表现,由此说明在干旱胁迫下,美国流苏树叶片生长受到一定的损害^[44]。

干旱胁迫会导致植物细胞的超微结构发生明显 的变化,叶绿体被破坏意味着植物细胞光合作用的紊 乱,严重影响植株的生长发育^[45]。本文超微观察结 果显示:随着干旱胁迫加剧,美国流苏树叶片细胞内 部结构被逐渐破坏,中度和重度干旱胁迫下叶片细胞 中叶绿体和淀粉粒降解,嗜锇颗粒增多,质壁产生分 离,基粒片层逐渐消失,细胞结构破坏严重,说明胁迫 程度加剧会导致其光合能力逐渐降低,胁迫严重时会 导致细胞产生不可逆的损伤,进而影响植株生长^[46]。

综上所述,美国流苏树在干旱胁迫下会通过降低 光合作用速率、改变叶片结构特征来提高自身的抗旱 能力,且在轻度干旱胁迫下具有较强的适应能力。

参考文献:

- [1] ANDEREGG W R L, FLINT A, HUANG C Y, et al. Tree mortality predicted from drought-induced vascular damage [J]. Nature Geoscience, 2015, 8(5): 367–371.
- [2] 汪 芳, 王舜奕, PROMINSK M. 城镇化与地方性中的水资源: 可持续视角的水环境保护利用与水空间规划设计[J]. 地理研究, 2018, 37(12): 2576-2584.
- [3] 杨 娟,姜阳明,周 芳,等. PEG 模拟干旱胁迫对不同抗旱性 玉米品种苗期形态与生理特性的影响[J].作物杂志,2021,37 (1):82-89.
- [4] ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests [J]. Forest Ecology and Management, 2010, 259(4): 660–684.
- [5] 殷东生,魏晓慧.干旱胁迫对风箱果幼苗生长、光合生理和抗氧化酶活性的影响[J].东北林业大学学报,2019,47(1):26-29.
- [6] 钱又宇,薛 隽.世界著名观赏树木 美国流苏树・美国香槐[J].园林, 2009, 26(7): 66-67.
- [7] 胡 涛,曹 钰,张鸽香.基质和植物生长调节剂对美国流苏
 硬枝扦插生根的影响[J].浙江农林大学学报,2019,36(3):
 622-628.
- [8] 曲 凯. 流苏种质资源的收集评价及遗传多样性的分析[D]. 泰安:山东农业大学, 2019:4.
- [9] 何家庆. 中国外来植物[M]. 上海: 上海科学技术出版社,

2012: 88-89.

- [10] 孟玲玲, 张鸽香. 美国流苏种子休眠原因探析[J]. 广东农业科学, 2015, 42(6): 35-39.
- [11] 李 晓,张鸽香,胡凤荣,等.美国流苏根尖预处理及核型分析[J].分子植物育种,2019,17(19):6447-6454.
- [12] 赵丹丹,李 晓,张鸽香.流苏树与美国流苏形态及解剖结构
 研究[J].中国野生植物资源,2021,40(7):1-6.
- [13] 胡 涛,曹 钰,张鸽香.美国流苏嫩枝扦插及生根内源激素 含量的变化[J].西北林学院学报,2019,34(2):109-115.
- [14] 梁君瑛.水分胁迫对桑树苗生长及生理生化特性的影响[D]. 北京:北京林业大学,2008:9-11.
- [15] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育 出版社, 2000: 134-136.
- [16] 任媛媛, 翟晓巧, 刘艳萍. 6个构树无性系叶片解剖结构与抗 旱性的关系[J]. 陕西农业科学, 2015, 61(12): 17-21.
- [17] 何小三,王玉娟,徐林初,等.干旱胁迫对不同油茶品种叶片 解剖结构的影响[J].中南林业科技大学学报,2020,40(10):
 1-17.
- [18] 徐柏森,张耀丽,何开跃,等. 植物透射电镜样品制备技术探讨[J].中国野生植物资源,2006,25(3):41-43.
- [19] 周蕴薇. 翠南报春叶片细胞超微结构对低温的适应性变化[J]. 园艺学报, 2006, 33(6): 1365-1368.
- [20] 陈 斌,刘筱玮,徐 畅,等.不同光合有效辐射对2种鸭跖 草科植物生理指标及超微结构的影响[J].东北林业大学学 报,2020,48(11):14-22.
- [21] 孙 哲,范维娟,刘桂玲,等.干旱胁迫下外源 ABA 对甘薯苗 期叶片光合特性及相关生理指标的影响[J].植物生理学报, 2017,53(5):873-880.
- [22] 孔艳菊, 孙明高, 胡学俭, 等. 干旱胁迫对黄栌幼苗几个生理 指标的影响[J]. 中南林学院学报, 2006, 26(4): 42-46.
- [23] 姚春娟,郭圣茂,马英超,等.干旱胁迫对4种决明属植物光合作用和叶绿素荧光特性的影响[J].草业科学,2017,34
 (9):1880-1888.
- [24] 黄承建,赵思毅,王龙昌,等.干旱胁迫对苎麻叶绿素含量的 影响[J].中国麻业科学,2012,34(5):208-212.
- [25] 李昌晓,钟章成. 三峡库区消落带土壤水分变化条件下池杉幼 苗光合生理响应的模拟研究[J]. 水生生物学报, 2005, 29 (6): 712-716.
- [26] 陈晓荣,陈昶旭,施力铭,等.干旱对水稻生理生化的影响 [J].自然科学,2020,8(4):220-226.
- [27] FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33: 317-345.
- [28] 许大全. 光合作用效率[M]. 上海: 上海科学技术出版社, 2002: 4-47.
- [29] ANEV S, IVANOVA A, TZVETKOVA N, et al. Stomatal control on photosynthesis in drought-treated subalpine pine saplings [J].

Genetics and Plant Physiology, 2016, 6(1/2): 43–53.

- [30] 付土磊,周永斌,何兴元,等.干旱胁迫对杨树光合生理指标 的影响[J]. 应用生态学报,2006,17(11):2016-2019.
- [31] 陈志成,刘晓静,刘 畅,等. 锐齿栎幼苗生长、光合作用和非 结构性碳对遮阴和模拟光斑的响应[J]. 生态学杂志, 2017, 36(4): 935-943.
- [32] 张燕红,吴永波,刘 璇,等.高温和干旱胁迫对杨树幼苗光 合性能和抗氧化酶系统的影响[J].东北林业大学学报,2017, 45(11):32-38.
- [33] 赵会杰,邹 琦,于振文.叶绿素荧光分析技术及其在植物光 合机理研究中的应用[J].河南农业大学学报,2000,34(3): 248-251.
- [34] 姚春娟, 郭圣茂, 马英超, 等. 干旱胁迫对4种决明属植物光 合作用和叶绿素荧光特性的影响[J]. 草业科学, 2017, 34 (9): 1880-1888.
- [35] 吴金芝,黄 明,王志敏,等.干旱对冬小麦旗叶光合参数、产 量和水分利用效率的影响[J].江苏农业学报,2021,37(5): 1108-1118.
- [36] 卢从明,张其德, 匡廷云. 水分胁迫对小麦光系统 Ⅱ 的影响 [J]. 植物学报, 1994, 36(2): 93-98.
- [37] 李敦海, 宋立荣, 刘永定. 念珠藻葛仙米叶绿素荧光与水分胁 迫的关系[J]. 植物生理学通讯, 2000, 36(3): 205-208.
- [38] 朱成刚, 陈亚宁, 李卫红, 等. 干旱胁迫对胡杨 PSⅡ光化学效 率和激能耗散的影响[J]. 植物学报, 2011, 46(4): 413-424.
- [39] 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 16(4): 444-448.
- [40] 刘 彧,王 琳,杨伊如,等.干旱胁迫下转 CINAC9 基因露地 菊品种 '纽 9717' 叶片光合及叶绿素荧光特性的比较[J]. 植物 资源与环境学报, 2018, 27(3): 41-48.
- [41] 吴丽君,李志辉,杨模华,等.赤皮青冈幼苗叶片解剖结构对 干旱胁迫的响应[J].应用生态学报,2015,26(12): 3619-3626.
- [42] 崔艳桃. 干旱胁迫对 4 种委陵菜属植物结构和生理的影响[D]. 哈尔滨:东北林业大学, 2013: 14-15.
- [43] 刘济明,邓明明,李丽霞,等.干旱胁迫对艾纳香盆栽幼苗生长及叶片结构的影响[J].云南农业大学学报(自然科学),2019,34(1):138-144.
- [44] 王延秀, 贾旭梅, 石晓昀, 等. 三种苹果砧木应对干旱胁迫的 超微及解剖结构响应特性[J]. 植物生理学报, 2018, 54(4): 594-606.
- [45] 张丽莉,石 瑛,祁 雪,等.干旱胁迫对马铃薯叶片超微结构及生理指标的影响[J].干旱地区农业研究,2015,33(2): 75-80.
- [46] 吴 凯,周晓阳.环境胁迫对植物超微结构的影响[J].山东林 业科技,2007(3): 80-83,71.

(责任编辑: 郭严冬)